coco关键点标注json_MS COCO数据标注详解

本文详细介绍了COCO数据集中对象关键点标注的JSON格式,包括info、licenses、images、categories、annotations等字段。通过示例展示了如何从原始JSON中提取一张图片的数据,并将其保存为新JSON文件,以便于观察和分析数据特点。同时,文章还提到了COCO API的使用,用于数据的可视化验证。最后,文中提到了Object Keypoint类型的标注格式和Image Caption的标注格式的区别。
摘要由CSDN通过智能技术生成

参考:

完整代码点击此处

JSON文件

json文件主要包含以下几个字段:

详细描述参考 COCO 标注详解

{

"info": info, # dict

"licenses": [license], # list ,内部是dict

"images": [image], # list ,内部是dict

"annotations": [annotation], # list ,内部是dict

"categories": # list ,内部是dict

}

打开JSON文件查看数据特点

由于JSON文件太大,很多都是重复定义的,所以只提取一张图片,存储成新的JSON文件,便于观察。

# -*- coding:utf-8 -*-

from __future__ import print_function

from pycocotools.coco import COCO

import os, sys, zipfile

import urllib.request

import shutil

import numpy as np

import skimage.io as io

import matplotlib.pyplot as plt

import pylab

import json

json_file='./annotations/instances_val2017.json' # # Object Instance 类型的标注

# person_keypoints_val2017.json # Object Keypoint 类型的标注格式

# captions_val2017.json # Image Caption的标注格式

data=json.load(open(json_file,'r'))

data_2={}

data_2['info']=data['info']

data_2['licenses']=data['licenses']

data_2['images']=[data['images'][0]] # 只提取第一张图片

data_2['categories']=data['categories']

annotation=[]

# 通过imgID 找到其所有对象

imgID=data_2['images'][0]['id']

for ann in data['annotations']:

if ann['image_id']==imgID:

annotation.append(ann)

data_2['annotations']=annotation

# 保存到新的JSON文件,便于查看数据特点

json.dump(data_2,open('./new_instances_val2017.json','w'),indent=4) # indent=4 更加美观显示

Object Instance 类型的标注格式

主要有以下几个字段:

info

"info": { # 数据集信息描述

"description": "COCO 2017 Dataset", # 数据集描述

"url": "http://cocodataset.org", # 下载地址

"version": "1.0", # 版本

"year": 2017, # 年份

"contributor": "COCO Consortium", # 提供者

"date_created": "2017/09/01" # 数据创建日期

},

licenses

"licenses": [

{

"url": "http://creativecommons.org/licenses/by-nc-sa/2.0/",

"id": 1,

"name": "Attribution-NonCommercial-ShareAlike License"

},

……

……

],

images

"images": [

{

"license": 4,

"file_name": "000000397133.jpg", # 图片名

"coco_url": "http://images.cocodataset.org/val2017/000000397133.jpg",# 网路地址路径

"height": 427, # 高

"width": 640, # 宽

"date_captured": "2013-11-14 17:02:52", # 数据获取日期

"flickr_url": "http://farm7.staticflickr.com/6116/6255196340_da26cf2c9e_z.jpg",# flickr网路地址

"id": 397133 # 图片的ID编号(每张图片ID是唯一的)

},

……

……

],

categories

"categories": [ # 类别描述

{

"supercategory": "person", # 主类别

"id": 1, # 类对应的id (0 默认为背景)

"name": "person" # 子类别

},

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值