本篇内容:弧微分与曲率
引子
有曲线L=S(x),取其一点x,S(x)对应曲线上点M,在M旁取S(x+dx)对应曲线上M’
将上图小三角形放大,就是一个标准的Rt三角形(不是近似的曲边三角形).
三边存在关系(dS)2=(dx)2+(dy)2,
直角坐标形式表示
由参数方程确定的函数表示形式
曲率与曲率半径
曲率的影响因素
在左右两图中,在曲线上截取两点MN,过MN做切线所成夹角均为Δα
因素一:弧长越短,曲率越大。曲率与弧长成反比。
在左右两图中,在曲线上截取两点MN,MN弧长相等,过MN做切线所成夹角分别为Δα1和Δα2,Δα1>Δα2
因素二:弧长相等,夹角越大,曲率越大。曲率与切线夹角成正比。
平均曲率与曲率
平均曲率
利用极限求曲率
谁是α呢?上个图
由上图可以看出∠α其实是一个关于x的函数
推导
例题
例1
例2
曲率半径
如图,有曲线L:y=f(x),取其一点M,做切线l:y=ax+b,过M点取长度r为半径做圆,该圆与曲线L在点M相切,则该圆称为M处的曲率圆,r为该曲率圆的半径,简称M的曲率半径
曲率半径为1/k极为曲率倒数
本篇完。