在这里,我们已有了均值-方差前沿:
其中
是风险资产的协方差矩阵,
但其实在本文中,均值-方差前沿的具体数学形式并不重要,以上内容可以忽略。
我们现在可画出均值-方差前沿的图像,这是一双曲线的右支,图中也已标出最小方差组合
,根据在给定风险(标准差)下选择最大期望收益率的原则,
点上方的曲线我们称为有效边界。
均值-方差前沿
注意,在推导有效边界的过程中,我们假设这些组合全由风险资产构成。现在我们引入无风险资产,它显然应该落在纵轴上。
现在我们可以把一定量的资本在某一特定的风险资产组合与无风险资产之间分配,由于无风险资产与风险组合的协方差为零,易得期望收益率和标准差分别以风险资产分配比例为权满足线性关系,故在图上体现为从纵轴上的无风险资产点出发,经过有效边界上一点的射线。
我们把这样的线,称为资本配置线(CAL, Capital Allocation Line),线上的每一点表示一个风险资产与无风险资产组成的投资组合。由于有效边界上有无数个风险资产(组合),故我们能找到无数条 CAL。