关键词: MRI 磁共振成像技术 Dixon 水脂分离 相位矫正
如上图所示,在磁共振中水脂共振频率存在差值,在1.5T中这个差值为208Hz(上一期中提到θ=γGt,所以在3.0T中这个值是加倍的),也就是说每隔4.8ms就会有一次周期变化,当M水和M脂方向相同的时候(如TE=4.8ms),进行扫描就会得到水脂相加图——称之为水脂正相(in);向相反的时候(如TE=2.4ms),扫描得到水脂肪信号相减图——水脂反向(op)。
因此有in=M水+M脂,op=M水-M脂,
所以in+op= (M水+M脂)+(M水-M脂),M水=(in+op)/2
同样in-op= (M水+M脂)-(M水-M脂),M脂=(in-op)/2
以上就是Dixon在1984年提出的Dixon成像技术,利用正反像计算出水像和脂像,对于熟悉磁共振的技师和医生这些可能都熟记于心。下面我们就来展示一些国内MRI技师和医生不太熟悉和东西。
这个老头就是W. Thomas Dixon, Ph.D.
这是1984年Dixon论文中的成功案例图像,使用的是0.35T磁共振。为什么说是成功案例,因为论文里也放出了不成功的案例,就算是现代商业化Dixon技术也会出现失败的情况。
我们暂时不了解Dxion技术的核心,因此我们就根据教科书上的公式来
我们先在一台3.0T飞利浦MRI上获取一组正反相位图,在扫描之前加上B0和B1的矫正,然后只取扫描范围最中间的一层。
左边TE=2.3ms(in),右边TE=1.3ms(op)按照公式,利用公式直接进行加减,期望得到水脂分离的效果。
OK,出来两组跟期望不怎么相符的图像,水脂一点也没分离,得到了两组没什么用也不能看的图像。
上一期中说到,磁共振扫描是记录的H质子向量的状态,既然是向量,那么就要有幅值和角度两个属性。
因此,在扫描时打开原始图像保留,我们得到上面两组图像的相位图
这两组就是相位图,最亮的地方记做180°,最黑的地方记做-180°。
和上面正反相位图(最为幅度)组合,就生成了两组向量矩阵,这个矩阵中的每个像素都是向量(四维图),因此只能放在matlab中进行计算,人类不能直接观看两幅图像。
这次计算不再鲁莽,去找到一份简单可能的算法,运用笔者强大的搜索能力,找到了这篇还算能看的懂得论文——Breath-Hold Water and Fat Imaging Using a Dual-Echo Two-Point Dixon Technique With an Efficient and Robust Phase-Correction Algorithm Jingfei Ma(华人)
文中使用了一种自动生长的相位矫正法,文中只涉及简单的加减运算,没有涉及相位解卷绕,我们来实现它。
我们把正向图矩阵记做S0,反向图记做S1。
第一步,
如上图,因为各种误差的存在,正反相位不可能老老实实呆在x轴上,因此先消除一个偏角,让S0的偏角为0,S1的偏角为S1的偏角减去S0的偏角(计算后的矩阵记做S1-0)。
第二步,
只在乎S1-0矩阵,在自动生长过程中,让每个向量和周围的向量比较,如果出现角度和周围向量偏差较大的向量,进行修正,使此向量=-1×此向量。(作为初代Dixon,此步骤可以跳过,但会出现部分不能分离的情况)
第三步,
计算S0-real(S1-0)。
Wow,这就是水像图,虽然有些地方分离的不是很好,但确确实实是一个可用的水像。
接下来的几天都沉浸在兴奋中。。。。。。。。。。。。。
直到有一天,想起直接根据real(S1-0)的正负号(记做r)进行计算,S0-r×| S1-0|。
和上次的结果相比,这次分离的更成功,胰腺和脾脏还有皮肤的脂肪去的更干净。
初代Dixon算法解析完毕。
以上。
这种算法只是对条件好的DIXON进行分离,商业化还差一大步,下一期剖析真正能商业化的DIXON算法,请带好大脑http://3g.dxy.cn/bbs/topic/43527270
此文献给只能靠自学和探索的广大的国内磁共振技师。