#这段时间在整理变量众多的临床数据,为了提高效率,复习了一下之前学到的R语言绘制临床资料基线表的R代码,并以飨各位。为什么说(1),以为后面还会适时补充单因素和多因素R语言分析的代码。
##临床资料基线表--三线表
rm(list = ls())
library(survival)
data("pbc")##使用survival包自带的数据集
##step 1.过滤缺失值
sapply(names(pbc), function(x)sum(is.na(pbc[x])))
pbc<-na.omit(pbc)
sapply(names(pbc), function(x)sum(is.na(pbc[x])))

##2.数据类型
str(pbc)
##将分类变量转换为因子型变量
factorVars<-c("status","trt","ascites","hepato","spiders","edema","stage")
pbc[factorVars]<-lapply(pbc[factorVars],factor)
str(pbc)

##3.数值型变量的正态性检验