知乎上好像没有关于这个的,我来粗略的写一下笔记。
一、历史
不妨从历史引入
1744年,Euler提出问题:
介于点
和点
之间的平面曲线
,使得它在绕
轴旋转时所生成的曲面面积最小。
Euler证明了函数
必须是一段悬链线,生成的旋转面叫做悬链面。
所以不妨扩展一下,通常把寻求以给定的空间闭曲线
为边界的面积最小的曲面的问题称为Plateau问题。
[1]
那么,现实中的例子有哪些呢?
19世纪,比利时物理学家J.Plateau做了一个实验:
将一根铜丝弯成一条封闭的空间曲线,将这个框架浸入配制好的肥皂液,然后将它轻轻地提取出来,那么肥皂膜形成的曲面有怎样的性质?
J.Plateau在他的著作中详细的描述和观察[2]
忽略掉薄膜本身的质量和其他干