曲线绕x轴旋转曲面方程_极小曲面入门

本文介绍了曲线绕x轴旋转形成的曲面方程及其历史背景,特别是19世纪J.Plateau的肥皂膜实验,展示了如何在表面张力作用下形成极小面积的曲面。极小曲面的研究始于Lagrange,其方程被Meusnier给出了几何解释。文章还提及悬链面和正螺旋面作为满足极小曲面方程的实例,并预告了后续的规范定义。
摘要由CSDN通过智能技术生成

知乎上好像没有关于这个的,我来粗略的写一下笔记。

一、历史

不妨从历史引入

1744年,Euler提出问题:

介于点

和点
之间的平面曲线
,使得它在绕
轴旋转时所生成的曲面面积最小。

Euler证明了函数

必须是一段悬链线,生成的旋转面叫做悬链面。

所以不妨扩展一下,通常把寻求以给定的空间闭曲线

为边界的面积最小的曲面的问题称为Plateau问题。
[1]

那么,现实中的例子有哪些呢?

19世纪,比利时物理学家J.Plateau做了一个实验:

将一根铜丝弯成一条封闭的空间曲线,将这个框架浸入配制好的肥皂液,然后将它轻轻地提取出来,那么肥皂膜形成的曲面有怎样的性质?

J.Plateau在他的著作中详细的描述和观察[2]

忽略掉薄膜本身的质量和其他干

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值