
弄清方向导数是什么?
全微分:https://www.zhihu.com/question/31464934/answer/152231899
偏导数、全导数:什么是全导数?
方向导数、梯度:https://www.zhihu.com/question/36301367/answer/156102040
(自己看的)
(x,y)的导数:过点(x,y)的切线斜率(y变化率)
微分:dy=f'(x0)dx,y随x离开x0变化的变化量,过点(x,y)的切线。x0 = x时指代任一x点
(x,y)的偏导:(三维)固定y/x,拍扁到x/y轴上曲线过点(x,y)的切线斜率。z的变化率
(x,y)的方向导数:(三维)拍扁到某方向上,过点(x,y)的曲线上过点(x,y)的切线斜率。z的变化率。偏导数就是在x轴方向/y轴方向
(x,y)全微分:dz = z_x(x)dx + z_y(y)dy 从点(x,y)出发的dz(变化量)。过点(x,y)的切平面
点(x,y)在任意方向上都可以做出过该点在且在曲面z上的曲线
故可以对每条曲线均做过(x,y)的切线
梯度:一个矢量,在这个方向上的方向导数最大。大小正好是该最大方向上的方向导数。(增长最快的方向)
热传导方程
问题:
在三维空间中,求某一物体内部温度的分布和变化规律。
假设:
- 物体均匀、各向同性
- 物体内部有热源,且与周围介质有热交换
数学建模:
- 能量守恒定律:因温度变化吸收的热量 = 物体边界流入的热量+物体内部热源生成的热量
- 傅里叶热传导定律(求物体边界流入的热量):
- 物体在dt内流过dS的
-
是在点(x,y,z)处的热传导系数
- v是曲面dS的法线。
是法线方向的方向导数
- 物体在dt内流过dS的
- 任取物体G的一微分小块,其闭曲面为S,包围区域为D
- u(x,y,z)是在点(x,y,z)的温度
1) 温度变化而吸收的热量
2) 物体边界流入的热量
由散度定理,可将上式化为:
3) 热源在区域D内产生的热量
热源强度F(x,y,z,t)
4)能量守恒定律得到热传导方程
因为t1、t2与区域D是任意的,且被积函数是连续函数,所以G内任意一点任意时刻均有
化简,即得到热传导方程一般形式
无热源:
一维:
二维:
Laplace方程 拉普拉斯方程
- Laplace 算子
- 三维Lalpace方程
- 三维热传导方方程:经过相当长时间后,无热源物体内各点的温度随时间变化而发生的变化已不显著,近似用
表示,这样,即可得到拉普拉斯方程:
- 三维热传导方方程:经过相当长时间后,无热源物体内各点的温度随时间变化而发生的变化已不显著,近似用
-
- 三维弦振动方程:经过相当长时间后,振动处于平衡状态,即
,也可推导出上式。
- 三维弦振动方程:经过相当长时间后,振动处于平衡状态,即