曲线绕x轴旋转曲面方程_偏微分 | 热传导方程与Laplace方程

abf58e0be58ee64ca77d823272718f18.png

弄清方向导数是什么?

全微分:https://www.zhihu.com/question/31464934/answer/152231899

偏导数、全导数:什么是全导数?

方向导数、梯度:https://www.zhihu.com/question/36301367/answer/156102040

(自己看的)

(x,y)的导数:过点(x,y)的切线斜率(y变化率)

微分:dy=f'(x0)dx,y随x离开x0变化的变化量,过点(x,y)的切线。x0 = x时指代任一x点

(x,y)的偏导:(三维)固定y/x,拍扁到x/y轴上曲线过点(x,y)的切线斜率。z的变化率

(x,y)的方向导数:(三维)拍扁到某方向上,过点(x,y)的曲线上过点(x,y)的切线斜率。z的变化率。偏导数就是在x轴方向/y轴方向

(x,y)全微分:dz = z_x(x)dx + z_y(y)dy 从点(x,y)出发的dz(变化量)。过点(x,y)的切平面

点(x,y)在任意方向上都可以做出过该点在且在曲面z上的曲线

故可以对每条曲线均做过(x,y)的切线

梯度:一个矢量,在这个方向上的方向导数最大。大小正好是该最大方向上的方向导数。(增长最快的方向)


热传导方程

问题:

三维空间中,求某一物体内部温度的分布和变化规律。

假设:

  • 物体均匀、各向同性
  • 物体内部有热源,且与周围介质有热交换

数学建模:

  • 能量守恒定律:因温度变化吸收的热量 = 物体边界流入的热量+物体内部热源生成的热量
  • 傅里叶热传导定律(求物体边界流入的热量):
    • 物体在dt内流过dS的
    • 是在点(x,y,z)处的热传导系数
    • v是曲面dS的法线。
      是法线方向的方向导数
  • 任取物体G的一微分小块,其闭曲面为S,包围区域为D
  • u(x,y,z)是在点(x,y,z)的温度

1) 温度变化而吸收的热量

2) 物体边界流入的热量

散度定理,可将上式化为:

3) 热源在区域D内产生的热量

热源强度F(x,y,z,t)

4)能量守恒定律得到热传导方程

因为t1、t2与区域D是任意的,且被积函数是连续函数,所以G内任意一点任意时刻均有

化简,即得到热传导方程一般形式

无热源:

一维:

二维:

Laplace方程 拉普拉斯方程

  • Laplace 算子

  • 三维Lalpace方程
    • 三维热传导方方程:经过相当长时间后,无热源物体内各点的温度随时间变化而发生的变化已不显著,近似用
      表示,这样,即可得到拉普拉斯方程:

    • 三维弦振动方程:经过相当长时间后,振动处于平衡状态,即
      ,也可推导出上式。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值