1.
背景
在声纹识别的应用中,常遇到的一个挑战是,应用场景需求的多样性、复杂性、以及明显的信道差异,使得基础声纹模型无法适配多个场景,声纹识别效果不理想。 在跨信道、跨领域时,声纹识别性能会明显下降。 为确保高准确率,通常需要针对应用场景精确地标注数据,从而优化训练出特定模型。 然而,昂贵的标注成本意味着无法对众多独立的应用场景进行数据标注。 在产品更新换代速度极快的互联网时代,人工标注的效率也时常难以跟上产品迭代的速度。 因此,工业界急需一套能在无标注数据的情况下,利用海量线上未标注数据,实现非监督自我学习的训练框架。
2. 算法探讨 作为智能家居的重要产品之一,智能音箱的声纹技术在落地应用中遇到的挑战是一个典型案例。 自首款音箱推出起,短短两年时间内,市场上已出现上百款不同型号的产品,以满足不同消费者群体的需求。 由于不同产品型号的硬件设备存在差异(6麦克风阵列vs. 2麦克风阵列、带屏幕vs. 不带屏幕,等等),信道差异对声音信号的影响使得无法使用一套普适性的声纹识别模型去应对不同产品和使用场景的需求。 面对这个难题,为智能家居提供声纹技术能力的算法团队进行了一系列算法上的探索和尝试,并取得了效果上的显著提升。 尝试一: 提出了一套基于CurriculumLearning思想的半监督训练框架。 如下图所示,针对于智能家居场景数据,通过Curriculum Learnin
yolov3模型识别不出训练图片_【技术揭秘】使用无监督方式训练声纹识别模型的探索...
最新推荐文章于 2024-05-12 00:30:00 发布
在声纹识别领域,面对多样性和信道差异的挑战,传统的标注方法成本高昂且效率低下。本文介绍了两种无监督训练框架的尝试:基于Curriculum Learning的半监督方法和利用regularization技术优化的自我学习过程。实验结果表明,这些方法能显著提高模型性能,尤其在无标注数据的情况下,实现了模型的自我迭代和增强,适用于不同场景的智能音箱和其他智能家居产品。
摘要由CSDN通过智能技术生成