过直线上一点画垂线图_可以不借助解析几何画出平面上两点电荷的等势线吗?——等势线的另一种作法...

本文提出了一种不借助解析几何的几何作图法,用于绘制两点电荷(同种或异种,等量或不等量)在平面上的等势线。详细阐述了作图原理,特别介绍了如何找零势圆,并通过GeoGebra展示了实例。文章还证明了异种电荷的零势线是一个圆,并提供了相关证明。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

a0c5436bba6aa2feb84a4c3c2db70168.png

提要:本文介绍一种两点电荷等势线的几何作图法。

概述

平面上两点电荷的等势线是指平面上两点电荷产生的电势场的电势等值线。这两个电荷可以是相同电性的,也可以是相反电性的;可以是等量的,也可以是不等量的。如果两电荷间距为

,则它的电势场可以由下式给出(坐标系显然):

如果

一定,这就是等势线方程。通常情况下,绘制等势线需要借助电脑,至少也需要计算器进行逐点计算描点连线。当然用电脑绘制已经很方便,但是这里还是提供一个可以免于计算的几何作法。这个方法是很有美感的。

另外,应用这种方法,还可以直接作出零势圆(零势圆的定义后文会给出)。


作图原理

两点电荷的电势场为

分别为两个点电荷到平面上一点的距离,
为右侧电荷的电荷量,
是左侧电荷和右侧电荷的电荷量比值,带符号。
是静电力常数。

为了作图方便,定义一个量

.

。很明显
的形状就是等势线的形状。

为了画出等势线,必须先找出

对应的线段长度。

注意到如果将

坐标系的
坐标取
坐标取
,则
就是直线
。但是现在只得到了
,如果要得到
,必须找到一个几何上的倒数关系。想到倒数,很自然地联想到双曲线
。这样大致的方向就已经出来了。

下面先以等量同种电荷为例。即

现将直线

),双曲线
)画在坐标系里(在这里
),就得到下图:

1554d9c2965ec5df77c167a5dca9cbf1.png

直接找双曲线上的点是没有意义的,因为满足条件的

全部在直线
上。自然地意识到应该在直线
上找一点,找到其对应的横纵坐标,再映射到双曲线上,得到横纵坐标的倒数。

于是在直线

上找一点
,过
分别作
轴,
轴的垂线
轴,
轴于
,交双曲线
,如图。

3fb66c3521da911b9c192cea12bdc9c2.png

显然,

,过
,如图。

ed66502aa520ccf7071041f3fc23ee4e.png

易知四边形

,四边形
均为矩形。

根据双曲线

的性质易知

所以

又因为

所以

这就找到了等势线对应的

长度。

现在的问题在于如何将这个两个线段长度转化为一个确定的点的位置。

现在另外一个平面上找两点

,使得
的长度对应两点电荷的间距。于是
分别对应两个点电荷的位置。

现在的目标是找到点

,使得
.如下图。

564a940beed60fbf6f226cb2570a74b5.png

,很自然地想到以
为圆心,
为半径,分别作
。设
,则
都满足
。换言之,
即为所求。

48f0fa1e9748d733e3399ec9028fadd9.png

解毕。

确定,
点在
上滑动时,
的轨迹就是要找的等势面。

下面用GeoGebra画图:

,电荷距
:

f78895d972d433f968617655b53b4c5a.png

...以及更多的例子:

2ce56da64a7056325dc77ae83c44a4e2.png

多漂亮!

在画图的时候,注意到如果

取得比较巧,正好使得直线
(电荷距为
),即
,那么等势线正好过势能的鞍点,如图:

8fb3a83fedb95a46d1548750d4576d11.png

这是因为直线

,即直线上存在一个点使得

即使得

所以此时

,即
半径相加等于圆心距,也就是两圆相切。此时
有且仅有一个公共点
,即
中点。这个点就是鞍点所在的位置。

所以当

时,等势线过鞍点。

换言之,鞍点对应的

就是
,即鞍点电势为
。这是由上述作图方法得到的特殊点的值。

以上就是关于等量同种电荷等势线作法的说明。

了解了这种作法的核心思想,要知道其他情况(等量异种,不等量同种/异种)的作法就很简单了。

事实上,这个作法的结果完全取决于直线

的情况。只需要调整直线
的方程,就可以画出其他情况的等势线。

下面再具体地稍作说明。

取直线

(不同于上文的),以同样的方法再次作出几张图:

(不等量同种电荷):

9abb4ad6a0e14b325433507632d03065.png

(等量异种电荷):

53804a5a97869b5816dbf2ad202b0e96.png

(不等量异种电荷):

ca451368dd9493ec64dc689861621f89.png

不难发现,无论是哪种情况,仍然满足关系:

换言之,这种作图方法是普适的,画出的等势线取决于直线
的情况,即参数
的取值(也就是电荷量大小和电势大小,显然,从物理意义上讲,这两个量的不同取值对应不同的等势线),也就是直线的斜率
,纵截距
。下面对不同的情况做一个总结:
  1. 时,为不等量同种,左侧电荷量大;
  2. 时,为等量同种;
  3. 时,为不等量同种,右侧电荷量大;
  4. 时,退化为单点电荷;
  5. 时,为不等量异种,右侧电荷量大;
  6. 时,为等量异种;
  7. 时,为不等量异种,左侧电荷量大;
  8. 其余情况不存在。

以上就是对这种等势线作法的说明。这一节的最后,附上几种情况的作图结果:

c217c6f88b255839ec63dee9007d0a34.png
不等量同种

366f1f00332f1afadf54bbab47df5fd3.png
等量异种

6541777f2add10f8f442c803a82d1c85.png
不等量异种

最后是作者的手稿:

1d3addd55cf6083bf7952dc1576f9c71.png

当然,我相信手画是可行的。


零势圆

这是我取的名字。

定理:在平面上异种电荷产生的电势场电势为0的等势线为一个圆,这个圆叫做零势圆。

需要注意的是,这里提到的圆是一个“广义的”圆,半径可以为无穷大。换言之,它可以是一条直线(这种情况在等量异种电荷中出现)。

当然,这只是等势线的一个特殊情况。将这个情况提取出来,是为了以此同解析几何方法作一个对比。至于孰好孰坏,由读者来评判。

好的,下面证明这个定理。

由几何关系易得,平面上异种电荷产生的电势场为:

(这里

按照定义有

,即

移项得

两边同乘

两边平方得

展开得

整理得

整理到这里依然还是普适的,但要整理成圆的标准方程,要求

,换言之,标准方程中不包括等量异种电荷的情况,需要分两类讨论。

时,上式化为
,即

可以看出就是点电荷连线的中垂线。

时,将原式两端同除以
,得

显然是圆的标准方程。

证毕。

根据方程的性质,得到:

参考公式:
对于圆的标准方程

圆心为

半径为

圆心在

半径为

作出这个圆并不困难,但是我们仍然可以利用关系

以相同的方法找两个圆的交点轨迹得到零势圆。

取直线

),以同样的方法再次作出熟悉的图:

e633de51252f9251664635e353c7070e.png

拖动

点得到轨迹:

1e6a28af87484e7011210cc305542ee2.png

这看起来确实是一个圆,可惜这没有解答为什么这是一个圆。我相信这背后一定有一个漂亮的几何证明,但是我才疏学浅,未能得到。希望有心人能够补充证明。


以上介绍了平面内两点电荷的等势线的几何作法。

这个方法很可能是作者首创的,似乎前人没有发现这个作法。但如果不是,希望读者提出来。

以上。谢谢。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值