一、假设检验基本概念
1.1 什么是假设检验?
我们先通过一个具体案例来说明此假设检验的概念及过程:某钢帘线工厂生产线上的钢丝平均抗拉强度为1000kg,标准差为150kg。经过工艺参数优化调整后,希望钢丝的平均抗拉强度能够有所提高。项目团队实施改进后,随机抽取了25根钢丝,测得钢丝平均抗拉强度为1025kg。问:是否断言,钢丝平均抗拉强度有所提高?
从上述例子可以看出,我们是希望通过样本观测数据的情况,即“随机抽取25根钢丝测得平均抗拉强度1025kg”这样的结果,去推断总体参数“整批钢丝平均抗拉强度是否提高”。这样我们就得出了假设检验问题的基本概念:
根据所获取样本——运用统计分析方法——对总体参数X的一个假设做出判断
1.2 假设检验组成部分
1.2.1 原假设与备择假设(零假设与对立假设)
继续回到上面的例子,我们用μ代表总体的钢丝抗拉强度的平均值,这个值我们是不知道的。我们从抽样中得到的只是样本均值,而统计学的目的就是要用样本去推断总体。在此例中,我们知道,若总体均值μ=2000,则认为钢丝抗拉强度的平均值没有提高;若μ>2000.则认为钢丝抗拉强度平均值有提高。由此,我们建立两个命题,在假设检验中称这两个命题为假设(hypothesis)。前一个命题为原假设(或零假设)(null hypothesis),记为H0;后一个为备择假设(或对立假设)(alternative hypothesis),记为H1,即
H0: μ=2000;(相等的,无差别的,等号成立的结论当做原假设)
该假设是我们为了方便检验H1假设而提出的,且期望原假设H0能够被证伪;
H1:μ>2000; (待判定、待证明、不相等、有差别的结论作为备择假设--“> < ≠”)
该假设是我们期望证实的假设,一旦原假设H0被证伪拒绝,则该备择假设被你接受。
假设检验的思想和数学中的反证法很类似。但其实际上又有所区别,后者是在假设某一条件时发生了不合理的现象——逻辑的矛盾,从而否定该假设的条件,从而使得原条件得证。而假设检验中的不合理现象的推断依据是小概率原理:
小概率原理是指一个事件的发生概率很小,那么它在一次试验中是几乎不可能发生的,但在多次重复试验中是必然发生的。统计学上,把小概率事件在一次实验中看成是实际不可能发生的事件,一般认为等于或小于0.05或0.01的概率为小概率。
1.2.2 显著性水平α 及P值
检验假设时,我们首先根据实际场景的需要,确定出判定小概率事件的概率阈值,通常取0.05(即5%),记为α=5%,在假设检验中,α被称作为显著性水平。在H0假设条件下,计算出现给定样本数据的发生概率,此概率即为统计学中常常见到的p值(p-value)
- 当 p≤α时,说明在H0假设条件下,出现给定的样本数据是一个小概率事件,而实际上样本数据确实如此,即发生了不合理现象。故认为H0假设是错误的、被证伪。从而,拒绝H0假设,接受H1假设;
- 当 p>α 时,说明在H0假设条件下,出现给定的样本数据不是一个小概率事件,出现给定的样本数据是合理的,故H0假设被接受,而H1假设被拒绝;
1.2.3 第一类错误及第二类错误
- 第一类错误是指当原假设H0为真时,做出拒绝原假设的决定的错误决定,其发生的概率称为犯第一类错误的概率,也称为“拒真概率”,称为α;
- 第二类错误是指当原假设H0为假时,做出接受原假设的错误决定,其发生的概率称为“纳伪概率”,记为β;
在假设检验中,当p值(p-value)小于显著性水平α时,即会拒绝原假设H0。所以,第一类错误的发生概率即为显著性水平α;
- 下一讲会提到使用Minitab进行单总体均值检验的原理及操作步骤;