正交变换在基下的矩阵都是可逆阵_<读书笔记9>稀疏矩阵正交化以及QR分解[1]...

cd5b12b2f018306185cc9f89c526d8ea.png

本篇为稀疏矩阵求解算法经典论著<Direct Methods for Sparse Linear System>的<读书笔记 9>

解决最小二乘问题最可靠的方法是使用正交变换。本章考虑了基于Householder反射和给定旋转的QR因子分解。

5.1 Householder reflections

Householder 反射变换是形如

的正交矩阵,其中
为标量,并且
是一个列向量。向量
以及标量
是可以由向量
所确定的,并且使得
得到的向量的首元素
。此运算对于长度为
的向量
来说,仅需要
个浮点数运算(
)。矩阵
是对称正交阵(
)。公式如下:

是向量
的非零样式。如果
,则
。如果此条件始终满足,则稀疏矩阵的QR算法的理论以及算法将会得到简化。所以此处在讨论时均假定了
是向量
的结构化entry,即
总是稀疏向量
的entry,但是
可能数值为0,这使得
总是成立的。同时如果将矩阵
用于其他的向量
,即
,并且假定
,如果
非空,则
的非零样式变为
;否则

函数cs_happly对一个稠密向量

进行Householder变换,其中
是稀疏的。将
重写为
。向量
是矩阵
的第
列。

f850a4ad84b8adda8bc46d058914430c.png

5.2 Left- and right-looking QR factorization

本节介绍两种基于Householder的QR分解算法,将m×n矩阵A分解成乘积QR,其中Q是正交的,R是上三角形(如果m < n则为上梯形)。

假设A是

。一系列的n个Householder变换
,...
将A简化为上三角形形式。我们用
表示对
做了
次Householder变换
。对于第一个Householder变换矩阵
是由
的第一列得到的,所以
的第一列中除了对角线元素外,其他的都为零,并且
。同理,第
个Householder变换矩阵是由向量
得到,
的长度为
,从而可以计算出相对应的标量
以及向量
(长度为
)。这里我们令
为长度
的向量,其
个元素为0,
的元素为向量
(即
)。则有

定理5.1:

分解即为
,其中
并且

则正交矩阵

Householder变换可以采用左看(left-looking)以及右看(right-looking)方式。

右看算法qr_right中每一个Householder反射矩阵一旦构建,则就与A进行运算。但是qr_right函数比较难应用于稀疏矩阵算法中,即使它是前波稀疏QR(multifrontal sparse QR)算法的基础。其伪代码为:

30e1491734cf95f0359a3da9c1a2f7f6.png

左看算法qr_left仅对当前第

列应用Householder反射矩阵,一次运算仅对一列进行计算,能够更简单的应用于稀疏情况。

9f387c80bd37e711939579244acc6538.png

请注意qr_right和qr_left不计算Q的显式表示,即得到了每次householder变换的

,可以再额外计算对应的
矩阵,从而计算出
。下面描述的稀疏左视QR分解也是如此。

5.3 Householder-based sparse QR factorization

左侧QR分解算法(qr_left)构成了稀疏QR分解的基础。

表示矩阵
的第
行以及第
列的非零样式。令
表示
的第
行以及第
列的非零样式。令
的非零样式。令
是矩阵
的列消去树(即
的消去树)。

下面介绍相关的一些定理,有些定理要求

是结构化非零的(也就是说,即使在数字上为零,但是它是稀疏数据结构中的一个entry)。一些定理要求矩阵具有
strong Hall(在7.3节介绍)性质;否则,它们为非零模式为松散的上边界(loose upper bounds)。

strong Hall:如果

矩阵
的每个
(
)子矩阵至少有
个非零行。这样的
用消去法能够精确的预测
的结构。这种性质被称为
SHP(strong Hall property )。

如果一个矩阵不具备这样特性,则可以通过行交换得到梯形矩阵后,得到的矩阵则满足SHP,并且并不影响QR分解,即行变换后的矩阵

的QR分解,乘以
后就得到了
的QR分解。

定理5.2 考虑到

,对于行号
,则
的非零样式与
的非零样式一致;对于行号
,则对于
的非零样式为

定理5.3 如果

为正定阵,并且它的Cholesky分解为
,则有

定理5.4 如果

对所有的
,则有

定理5.5 假定矩阵

具有SHP特性,则
,其中
表示
的Cholesky分解的
的第
行的非零样式。如果
不具有SHP特性,则

定理5.6

,其中
的上三角部分的第
列的非零样式。(假设
具有SHP特性)。

定理5.7

(假设
具有SHP特性)。

定理5.8 如果A具有SHP特性,

,并且

。如果不满足SHP,则为
的上界。

定理5.9,如果A具有SHP特性,

。否则的话,为
的上界。

这些定理构成了QR分解的符号分析(尤其是定理5.2和5.8),由下图所示。其中上三角矩阵

以及Householder向量组成的下三角矩阵
的构成在同一个矩阵中。

0f64e41f54deec4c549e280a538df5ce.png

左视QR分解的伪代码则如下:

966537436849b2c45898f2ca9d23dd9b.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值