实对称矩阵的性质_19、对称矩阵、共轭和虚数、复矩阵的模长、酉矩阵、正定矩阵...

本章包含许多概念:

对称矩阵

正定矩阵

共轭矩阵

虚数的共轭和平方

复矩阵

复矩阵的模长和内积

酉矩阵

这里面很多的概念是准备学习“傅里叶”之前所必备的概念。

本人吃了很大的亏,一开始轻视学习对称矩阵,奉劝学习的人一定要侧重学习对称矩阵!一开始我们不知道它有什么用,甚至感觉它就是一种巧合,逐渐在后面的知识中,它意外得像一匹黑马,非常重要

本章有些强调和补充地方,啰嗦,也是本人在学习中曾经被忽视的地方。


在学习到代数的后期,我们会逐渐发现一个矩阵的性质、特点,很多时候都体现在它的特征值和特征向量上。

而对称矩阵,逐渐成为拉开这个序幕的一股重要的力量。

对称矩阵,定义:

(1)

(2)特征向量之间,任意一对两两正交(这是个非常重要的一点,在之后运用中非常非常重要。

这说明了特征向量组成的“特征基矩阵”P也是一个正交矩阵。那么就有当A是一个对称阵时,存在正交矩阵使得:

,这完全运用了正交矩阵
的性质,且恰好的
等于对角阵D的原先使用条件是
,而特征基矩阵P又是两两正交,所以是正交矩阵,所以将P用正交矩阵Q去替换之。)

另外还能引申出其它的性质:

(3)如果A是一个对称阵,那么

构成的矩阵也是对称矩阵

另外其“长相”也有一定的特征:

(4)

8980b6a8f26199856d0c5f52bf42182b.png

注意的是:一开始学习的时候,更应该侧重记忆(1)(2)(3),而(4)在实际很多的问题上,我们更要发挥能不能“看”不重要,重点是要会用(性质123)。

(补充一点会遗忘的点:向量两两正交是指,比如上面图片中,3*1+1*2+7*9=0,如果结果是等于0,就是说,这一对向量两两正交,注意中间的符号是加哦,不是减!但对称矩阵是指对称矩阵A的特征向量之间两两正交,不是指对称矩阵A。)

关于对称矩阵的其它重要关注点:

(5)对称矩阵不一定可逆。比如一个三阶矩阵:

1 0 0

0 1 0

0 0 0

是一个对称矩阵,但存在0行0列,它是一个不可逆的矩阵。

类似的还有:

0 2 0

2 0 0

0 0 0

或者是0矩阵,这些,都是不可逆的。

对称矩阵可以逆,也可以无法逆;

它既可能线性无关,也可能线性相关;

它既可能存在0行0列,也可能是满秩。

关于这一系列的推导可以关注之前章节提到的“神功运转路线”。

(6)在(1)中

,进而,
一个可逆的对称矩阵
(或者也可以说)
,甚至
这些A的幂次对称矩阵都和对称矩阵A有相等的零空间和秩。(前提,A一定是可逆。)

还有可以补充可以延伸思考的另一个性质:

(7)对角矩阵都是对称矩阵。(但是对称矩阵不一定是对角矩阵!

强化和分辨:

(8)A基于是对称矩阵的前提:

在(2)说:对称矩阵A的特征向量之间,任意一对两两正交

可推导,A一定存在可逆的“特征基”矩阵P,进而可推到存在对角阵

也是一个对称矩阵,但A作为对称矩阵就不一定是对角阵了,参见(7)),

且可逆的“特征基”矩阵P,我们在(2)说 P是一个特征向量矩阵,任意一对两两正交,正交又完全等同于互相垂直的概念,

在之前的章节我们提到一句很重要的话:

“互相垂直的各列一定是线性无关的”,

所以A的特征向量矩阵P列向量一定都是线性无关的!

注意,初学的时候,非常容易将线性无关和A和

关联,这是一种错误的想法,

这里屡次强调的“两两正交,线性无关,绝对不存在0行0列,绝对可逆”,是指的是特征向量矩阵P,而不是A和

!P是A的特征向量矩阵!

(且绝对可逆,也同样也可以看出:

因为P可逆,所以P作为A的特征向量矩阵,可以有

我想表达的是:正因为P可逆,所以才存在A的

还是要强调一遍,是P可逆,P绝对是可逆的,而不是说对称矩阵A可不可逆!!!

A可以逆,也可以无法逆!

另一个非常重要的是:

上面讨论的是:A基于是对称矩阵的前提,P也是绝对存在的,P也绝对可逆。

但是,如果A不是对称矩阵,那么P也绝对存在,但P不一定是可逆的。A对角阵

也不一定存在了。

还有我们不能说,P可逆A就是对称矩阵,这种反推显然是不对的。

请一定要记住,不要弄混了。

(9)

基于(8)的讨论。特征向量P还能化为单位向量矩阵,只需要将长度缩放到1,所以我们有标准正交向量Q,即可以把P认为是标准正交矩阵Q。

(单位向量是指模等于1的向量。即范数(或者 内积)两两为1。)

所以对于

我们对P进行Schmidt化,而P已经是本身自带正交化,那么只需要单位化,就可以实现Schmidt化,我们就能将P化为标准正交矩阵Q(或者说规范正交矩阵Q),

得出:

而对于标准正交矩阵,我们有这样的性质:

(标准正交矩阵,它 逆等于转置)

,所以:

对了,因为我们一直说A是对称矩阵,对称矩阵一定是方阵,所以P单位化后,更准确的说法是正交矩阵,而非模棱两可的规范正交矩阵。

而对称矩阵说的

所以进一步的,

对于

也可以同等于

总结:

由于对称矩阵可以将特征向量矩阵P进行单位化而成为正交矩阵,所以有Q替代P,再因为正交矩阵的性质“Q的逆”和“Q的转置”这两个矩阵可以等同,对称矩阵又使得“Q的转置”等于“Q”,使得最后形成对于

同等于
的推论,

这就是实数空间的谱定理。

简而言就是,实数空间谱定理是:对称矩阵在标准正交基下某个特性互通。(这个特性就是上面的结论).

谱就是矩阵特征值的集合。

(我对谱定理还有很多不清晰,长路迢迢啊。)

补充:

虽然,上面没有讨论对称矩阵和正交矩阵之间关系,对称矩阵是A和

,正交矩阵是从P化到Q,但看到网络上充斥着大量的错误,所以特别说明下:

对称矩阵有可能是正交矩阵。大部分情况都不是正交矩阵。

正交矩阵可能是对称矩阵。大部分情况不是。对称矩阵(4)的性质和随便翻本书的正交矩阵的样子明显都不一样。

先看下不是的:比如:

1 0

0 0

它是一个对称矩阵,可逆不可逆对于它来讲无所谓,但它不是一个正交矩阵,因为它无法逆啊

这就说明了对称矩阵不是正交矩阵的其中一个例子。

而最简单的二阶单位矩阵就是对称矩阵,也是正交矩阵!

关于范数和Schmidt化,这部分可以看之间我写的章节:

14、范数、内积、归一、正交化、标准正交(Schmidt化)

(10)对称矩阵内的数字一定是实数。定义对称矩阵一定在实数空间内,不可能存在虚数。

这部分在下面的共轭矩阵中会再次提到。


(11)在对称矩阵中,特征值的乘积总是等于行列式

(12)对称矩阵中,

主元的正值的个数和负值的个数,分别等于,特征值正值的个数和负值的个数

(我们把正的特征值个数称为正惯性指数,把负的特征值个数称为负惯性指数)

(惯性指数是特征值的个数)

(本章暂且不提及惯性指数,在之后的学习中会提到。)

关于对称阵还有其它的性质,可觉得一时没有特别的关注点,可以看百度百科:

对称矩阵_百度百科


反对称矩阵:

满足

的矩阵为反对称矩阵。

且 可推,

。 (对称矩阵是

其外貌特征是主对角线上的元素是0,关于主对角线对称的元素互为相反数

比如

A=

0 1

-1 0

是个二阶反对称矩阵


正定矩阵:

正定矩阵A是对称矩阵中的一种。其特点是:

(1)A的特征值都是正的

(2)矩阵A行最简的主元都是正的。

(3)所有的子行列式都为正

子行列式概念:

从原行列式左上角开始依次划分出 1x1 的一块,2x2 的一块,...得到的这些子块对应的行列式就称之为“子行列式”。

copy下别人的例子,觉得没必要浪费时间再添加什么了:

bab0814a4925569b5faefe970f9f6f95.png

——推荐 ——推荐 ——推荐 ——推荐 ——推荐 ——推荐 ——

关于更详细的正定矩阵的学习和概念:

请参见本人写的22章:

回头是岸不回走:22、正定矩阵、正定二次型、半负定​zhuanlan.zhihu.com

共轭矩阵:

共轭矩阵又称为:自共轭矩阵、Hermite阵、埃尔米特矩阵。

共轭矩阵有分为“实数共轭矩阵”和“复数共轭矩阵”,

当是一个“实数共轭矩阵”时,实数共轭矩阵就是对称矩阵。

当是一个“复数共轭矩阵时”,即包含了虚部,那么它不是对称矩阵,

我们要明白对于虚数i的共轭是什么,

看一下概念:

两个实部相等,虚部互为相反数的复数互为共轭复数。(当虚部不等于0时也叫共轭虚数)

复数z的共轭复数记作

,也可表示为

根据定义,若z=a+ib (a,b∈R),则它的共轭是

=a-ib(a,b∈R)。

举个例子:

矩阵A为复数共轭矩阵:

1+i 2+i

2-i 1+i

在实数空间里,我们可以认为共轭就是为对称,而虚数还要参照上面说的。

所以在复数空间里,如果一个复数矩阵想拥有实数对称矩阵的性质,需要满足

简单说,包含实部和虚部的A要想拥有对称矩阵的性质,不仅要满足等于它的转置,还要等于它的共轭。

而如果是实数空间,没有虚部,那么就直接等于转置就可以了,没必要再共轭,因为它的共轭就是本身啊。

所以:在实数空间内,

永远同等于

(对称矩阵一定是实数。一定在实数空间内。)

备注:

共轭矩阵拥有这对称矩阵的性质,且共轭矩阵的特征值都是实数,它的特征向量互相垂直。


虚数的平方和共轭:

复数求范数或内积的核心就是,原先在实数空间内的

现在变为了需要对 每个复数“x” 求共轭,

考虑到转置这东西实在不过是公式里数乘运算的规范,其实在意义没有,那我想干脆就人性化,不要去记住转置这种东西,直接记得上面的式子,才简洁,不产生其它歧义。)

已知复数“x”是包含了实数和虚数,实数的共轭是本身,那么虚数的共轭是:

虚数的平方:(i3表示i的三次方,没这种写法,但我要节省时间,就这么写了)

i1 = i

i2= - 1

i3 = - i

i4 = 1

i5 = i

i6 = - 1

i7 = - i

i8 = 1

幂次i,一次循环以4为周期,

周期内一次奇数次方为i,二次偶数次方为-1,三次奇数次方为-i,四次奇数次方为1.

以此循环。

对于虚数的共轭是取相反符号:

比如:

i的共轭是-i

4+3i 的共轭是 4-3i

于是“对称矩阵”若在出现虚数,便不叫“对称矩阵”,复数空间里,它应该的叫法是:

“共轭矩阵”。

比如:

a 4+3i

4-3i b

备注:

共轭矩阵的特征值都是实数。它的特征向量互相垂直。

备注:

求一个数的共轭和共轭矩阵是不同的,并不是说“求某的共轭,它就是一个复数内对称矩阵。NO。”,共轭和共轭矩阵还是要有区分开来学习。


复矩阵和它的模长:

在复数空间内的矩阵都是复矩阵。

我们对包含实数和虚数的数求“模长”和“内积”,其操作和实数空间内求“模长”和“内积”稍有些不同。

做下实数求模长的简单回忆:

一个实数要求模长(范数、长度),

比如列向量A=[1 2]的模长为

即是

,也有公式这么阐述:

而对于复数的情况,即存在虚部,它的模长为

表达的即是A不仅要做转置要要同时做“共轭”。我们将

写做

H就是共轭矩阵、埃尔米特矩阵、自共轭矩阵。(H主要代表了实数虚数共轭的性质)


酉矩阵:

正交矩阵是指在实数空间的范围内的,而在复数空间里,有相同正交性质的,不叫正交矩阵,而叫“酉矩阵”。

简单总结:

在实数空间:A正交矩阵,B对称矩阵 ;

在复数空间:A酉矩阵 ,B共轭矩阵 。

(完)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值