【问题描述】
已知sinx的近似计算公式如下:
sin x = x - x3/3! + x5/5! - x7/7! + ... + (-1)n-1x2n-1/(2n-1)!
其中x为弧度,n为正整数。编写程序根据用户输入的x和n的值,利用上述近似计算公式计算sinx的近似值,要求输出结果小数点后保留8位。
【输入形式】
从控制台输入小数x(0<=x<=20)和整数n(1<=n<=5000),两数中间用空格分隔。
【输出形式】
控制台输出公式结果:小数点后保留8位。
【样例输入1】
0.5236 4
【样例输出1】
0.50000105
【样例输入2】
0.5236 50
【样例输出2】
0.50000106
【样例说明】
输入x为0.5236,n为4,求得sinx近似计算公式的值为0.50000105,小数点后保留8位;同样,输入x为0.5236,n为50,求得sinx近似计算公式的值为0.50000106,小数点后保留8位。
# sin x = x - x^3/3! + x^5/5! - x^7/7! + ... + (-1)^n-1 x^(2n-1)/(2n-1)!
x, n = input().split()
x = float(x)
n = int(n)
xiang = x
sign = 1
x_mici = x
jiechen = 1.0
sin_x = xiang
for i in range(2, n + 1):
sign *= -1
x_mici *= x * x
jiechen *= (2 * i - 1) * (2 * i - 2)
xiang = sign * x_mici / jiechen
sin_x += xiang
print("%.8f" % sin_x)