《具体数学》部分习题解答5

5.1

1 1 4 11^4 114 是多少?对一个知道二项式系数的人来说,为什么这个数容易计算?
在这里插入图片描述

因此: 1 1 4 = 14641 11^4 = 14641 114=14641

5.2

n n n 是一个正整数时, k k k 为何值, ( n k ) \binom{n}{k} (kn) 取最大值?证明你的答案.

k = ⌊ n 2 ⌋   和   ⌈ n 2 ⌉ . k = \lfloor \frac{n}{2} \rfloor \ 和 \ \lceil \frac{n}{2} \rceil. k=2n  2n.

证明:
当   k ≥ ⌊ n 2 ⌋   时 ( n k + 1 ) ( n k ) = n − k k + 1 ≤ 1 当   k < ⌈ n 2 ⌉   时 ( n k + 1 ) ( n k ) = n − k k + 1 ≥ 1 当 \ k \ge \lfloor \frac{n}{2} \rfloor \ 时 \\ \frac{\binom{n}{k+1}}{\binom{n}{k}} = \frac{n-k}{k+1} \le 1 \\ 当 \ k < \lceil \frac{n}{2} \rceil \ 时 \\ \frac{\binom{n}{k+1}}{\binom{n}{k}} = \frac{n-k}{k+1} \ge 1  k2n (kn)(k+1n)=k+1nk1 k<2n (kn)(k+1n)=k+1nk1
因此,最大值在 k = ⌊ n 2 ⌋   以 及   ⌈ n 2 ⌉ k = \lfloor \frac{n}{2} \rfloor \ 以及 \ \lceil \frac{n}{2} \rceil k=2n  2n 时出现

5.3

证明六边形性质:
( n − 1 k − 1 ) ( n k + 1 ) ( n + 1 k ) = ( n − 1 k ) ( n + 1 k + 1 ) ( n k − 1 ) . \binom{n-1}{k-1} \binom{n}{k+1} \binom{n+1}{k} = \binom{n-1}{k} \binom{n+1}{k+1} \binom{n}{k-1}. (k1n1)(k+1n)(kn+1)=(kn1)(k+1n+1)(k1n).
在这里插入图片描述

5.4

通过反转上指标(实际上是将负的上指标改变为正的值)来计算 ( − 1 k ) \binom{-1}{k} (k1).

( − 1 k ) = ( − 1 ) k ( k k ) = ( − 1 ) k [ k ≥ 0 ] \binom{-1}{k} = (-1)^k \binom{k}{k} = (-1)^k [k \ge 0] (k1)=(1)k(kk)=(1)k[k0]

5.5

p p p 是一个素数. 证明对于 0 < k < p 0 < k < p 0<k<p ( p k )   m o d   p = 0 \binom{p}{k} \bmod p = 0 (kp)modp=0. 对二项式系数 ( p − 1 k ) \binom{p-1}{k} (kp1) 这意味着什么?
在这里插入图片描述

5.7

k < 0 k < 0 k<0 时, r k ‾ ( r − 1 2 ) k ‾ = ( 2 r ) 2 k ‾ / 2 2 k r^{\underline{k}} (r - \frac{1}{2})^{\underline{k}} = (2r)^{\underline{2k}} / 2^{2k} rk(r21)k=(2r)2k/22k 仍然为真吗?

回顾第二章关于负指数的下降幂的一般定义:
x − m ‾ = 1 ( x + 1 ) ( x + 2 ) ⋯ ( x + m )   , m > 0 x^{\underline{-m}} = \frac{1}{(x+1)(x+2) \cdots (x+m)} \ , \quad m > 0 xm=(x+1)(x+2)(x+m)1 ,m>0
在这里插入图片描述

5.8

计算:
∑ k ( n k ) ( − 1 ) k ( 1 − k / n ) n . \sum_k \binom{n}{k} (-1)^k (1-k/n)^n. k(kn)(1)k(1k/n)n.
n n n 非常大时这个和式的近似值是什么?提示:对某个函数 f f f ,该和式等于 Δ n f ( 0 ) \Delta^n f(0) Δnf(0).

n n n 阶差分的公式:
Δ n f ( x ) = ∑ k ( n k ) ( − 1 ) n − k f ( x + k )   ,   整 数 n ≥ 0. \Delta^n f(x) = \sum_k \binom{n}{k} (-1)^{n-k} f(x+k) \ , \ 整数 n \ge 0. Δnf(x)=k(kn)(1)nkf(x+k) , n0.
在这里插入图片描述

5.9

证明 E t ( z ) = ∑ k ≥ 0 ( t k + 1 ) k − 1 z k k ! . \mathcal{E}_t (z) = \sum_{k \ge 0} (tk+1)^{k-1} \frac{z^k}{k!}. Et(z)=k0(tk+1)k1k!zk. 中的广义指数级数 E t ( z ) \mathcal{E}_t (z) Et(z) 服从规则:
E t ( z ) = E ( t z ) 1 / t   , t ≠ 0   , \mathcal{E}_t (z) = \mathcal{E} (tz)^{1/t} \ , \quad t \neq 0 \ , Et(z)=E(tz)1/t ,t=0 ,
这里 E ( z ) \mathcal{E} (z) E(z) E 1 ( z ) \mathcal{E}_1 (z) E1(z) 的缩写.

根据公式:
E t ( z ) r = ∑ k ≥ 0 r ( t k + r ) k − 1 k ! z k \mathcal{E}_t (z)^r = \sum_{k \ge 0} r \frac{(tk + r)^{k-1}}{k!} z^k Et(z)r=k0rk!(tk+r)k1zk
在这里插入图片描述

5.10

证明 − 2 ( ln ⁡ ( 1 − z ) + z ) / z 2 -2 (\ln{(1-z)} + z) / z^2 2(ln(1z)+z)/z2 是超几何函数.
在这里插入图片描述

5.11

将两个函数:
在这里插入图片描述

用超几何级数的项表示出来.
在这里插入图片描述

5.13

找出超阶乘函数 P n = ∏ k = 1 n k ! P_n = \prod_{k=1}^n k! Pn=k=1nk! Q n = ∏ k = 1 n k k Q_n = \prod_{k=1}^n k^k Qn=k=1nkk 以及乘积 R n = ∏ k = 0 n ( n k ) R_n = \prod_{k=0}^n \binom{n}{k} Rn=k=0n(kn) 之间的关系.
在这里插入图片描述

5.14

在范德蒙德卷积 ∑ k ( r m + k ) ( s n − k ) = ( r + s m + n )   ,   m , n 是 整 数 \sum_k \binom{r}{m+k} \binom{s}{n-k} = \binom{r+s}{m+n} \ , \ m,n 是整数 k(m+kr)(nks)=(m+nr+s) , m,n 中用反转上指标的方法证明恒等式 ∑ k ≤ l ( l − k m ) ( s k − n ) ( − 1 ) k = ( − 1 ) l + m ( s − m − 1 l − m − n )   ,   整 数 l , m , n ≥ 0 \sum_{k \le l} \binom{l-k}{m} \binom{s}{k-n} (-1)^k = (-1)^{l+m} \binom{s-m-1}{l-m-n} \ , \ 整数l,m,n \ge 0 kl(mlk)(kns)(1)k=(1)l+m(lmnsm1) , l,m,n0 .然后指出,另一个反转得到 ∑ − q ≤ k ≤ l ( l − k m ) ( q + k n ) = ( l + q + 1 m + n + 1 )   ,   整 数 m , n ≥ 0   ,   整 数 l + q ≥ 0 \sum_{-q \le k \le l} \binom{l-k}{m} \binom{q+k}{n} = \binom{l+q+1}{m+n+1} \ , \ 整数m,n \ge 0 \ , \ 整数 l + q \ge 0 qkl(mlk)(nq+k)=(m+n+1l+q+1) , m,n0 , l+q0.

证明:
在这里插入图片描述

5.15

∑ k ( n k ) 3 ( − 1 ) k \sum_k \binom{n}{k}^3 (-1)^k k(kn)3(1)k 等于多少?提示: ∑ k ( a + b a + k ) ( b + c b + k ) ( c + a c + k ) ( − 1 ) k = ( a + b + c ) ! a ! b ! c !   ,   整 数 a , b , c ≥ 0 \sum_k \binom{a+b}{a+k} \binom{b+c}{b+k} \binom{c+a}{c+k} (-1)^k = \frac{(a+b+c)!}{a!b!c!} \ , \ 整数a,b,c \ge 0 k(a+ka+b)(b+kb+c)(c+kc+a)(1)k=a!b!c!(a+b+c)! , a,b,c0.

  1. n n n 是奇数:
    k k k 是奇数时, n − k n-k nk 为偶数;而当 k k k 是偶数时, n − k n-k nk 是奇数。因此:
    ( n k ) 3 ( − 1 ) k + ( n n − k ) 3 ( − 1 ) n − k = 0 \binom{n}{k}^3 (-1)^k + \binom{n}{n-k}^3 (-1)^{n-k} = 0 (kn)3(1)k+(nkn)3(1)nk=0
    并且 ∑ k ( n k ) 3 ( − 1 ) k \sum_k \binom{n}{k}^3 (-1)^k k(kn)3(1)k 共有偶数个项,其中两两之和为零,所以总和为零

  2. n n n 是偶数,不妨设为 n = 2 m   ,   m ≥ 0 n = 2m \ , \ m \ge 0 n=2m , m0
    由公式(令 a = b = c = m) :
    ∑ k ( 2 m m + k ) 3 ( − 1 ) k = ( 3 m ) ! ( m ! ) 3 ⇒ ∑ − m + k ( 2 m k ) 3 ( − 1 ) − m + k = ( 3 m ) ! ( m ! ) 3 ⇒ ∑ k ( 2 m k ) 3 ( − 1 ) k = ( 3 m ) ! ( m ! ) 3 ( − 1 ) m \sum_{k} \binom{2m}{m+k}^3 (-1)^k = \frac{(3m)!}{(m!)^3} \\ \Rightarrow \sum_{-m+k} \binom{2m}{k}^3 (-1)^{-m+k} = \frac{(3m)!}{(m!)^3} \\ \Rightarrow \sum_k \binom{2m}{k}^3 (-1)^k = \frac{(3m)!}{(m!)^3} (-1)^m k(m+k2m)3(1)k=(m!)3(3m)!m+k(k2m)3(1)m+k=(m!)3(3m)!k(k2m)3(1)k=(m!)3(3m)!(1)m

5.16

计算和式:
∑ k ( 2 a a + k ) ( 2 b b + k ) ( 2 c c + k ) ( − 1 ) k   , \sum_k \binom{2a}{a+k} \binom{2b}{b+k} \binom{2c}{c+k} (-1)^k \ , k(a+k2a)(b+k2b)(c+k2c)(1)k ,
其中 a , b , c a, b, c a,b,c 为非负整数.
在这里插入图片描述

5.17

找出 ( 2 n − 1 / 2 n ) \binom{2n-1/2}{n} (n2n1/2) ( 2 n − 1 / 2 2 n ) \binom{2n-1/2}{2n} (2n2n1/2) 之间的一个简单关系.
在这里插入图片描述

5.18

找出乘积
( r k ) ( r − 1 / 3 k ) ( r − 2 / 3 k ) \binom{r}{k} \binom{r-1/3}{k} \binom{r-2/3}{k} (kr)(kr1/3)(kr2/3)
( r k ) ( r − 1 / 2 k ) = ( 2 r 2 k ) ( 2 k k ) / 2 2 k \binom{r}{k} \binom{r-1/2}{k} = \binom{2r}{2k} \binom{2k}{k} / 2^{2k} (kr)(kr1/2)=(2k2r)(k2k)/22k 类似的另一种形式.
在这里插入图片描述

5.19

证明: B t ( z ) = ∑ k ≥ 0 ( t k ) k − 1 ‾ z k k ! \mathcal{B}_t (z) = \sum_{k \ge 0} (tk)^{\underline{k-1}} \frac{z^k}{k!} Bt(z)=k0(tk)k1k!zk 中的广义二项级数 B t ( z ) \mathcal{B}_t (z) Bt(z) 服从规则:
B t ( z ) = B 1 − t ( − z ) − 1 . \mathcal{B}_t (z) = \mathcal{B}_{1-t} (-z)^{-1}. Bt(z)=B1t(z)1.

证明:
在这里插入图片描述

5.20


F ( a 1 , ⋯   , a m b 1 , ⋯   , b n ∣ z ) = ∑ k ≥ 0 a 1 k ‾ ⋯ a m k ‾ z k b 1 k ‾ ⋯ b n k ‾ k ! F \left( \left. \begin{array}{cccc} a_1, \cdots, a_m \\ b_1, \cdots, b_n \end{array} \right|{z} \right) = \sum_{k \ge 0} \frac{a_1^{\overline{k}} \cdots a_m^{\overline{k}} z^k}{b_1^{\overline{k}} \cdots b_n^{\overline{k}} k!} F(a1,,amb1,,bnz)=k0b1kbnkk!a1kamkzk
中用下降幂代替上升幂,用公式:
G ( a 1 , ⋯   , a m b 1 , ⋯   , b n ∣ z ) = ∑ k ≥ 0 a 1 k ‾ ⋯ a m k ‾ z k b 1 k ‾ ⋯ b n k ‾ k ! G \left( \left. \begin{array}{cccc} a_1, \cdots, a_m \\ b_1, \cdots, b_n \end{array} \right|{z} \right) = \sum_{k \ge 0} \frac{a_1^{\underline{k}} \cdots a_m^{\underline{k}} z^k}{b_1^{\underline{k}} \cdots b_n^{\underline{k}} k!} G(a1,,amb1,,bnz)=k0b1kbnkk!a1kamkzk
定义广义降噪几何级数,解释 G G G F F F 有何关系.

由习题 2.17 知: x m ‾ = ( − 1 ) m ( − x ) m ‾ . x^{\underline{m}} = (-1)^m (-x)^{\overline{m}}. xm=(1)m(x)m. link

在这里插入图片描述

5.21

证明:当 z = m z=m z=m 是正整数时, lim ⁡ n → + ∞ ( n + z n ) n − z \lim_{n \to + \infty} \binom{n+z}{n} n^{-z} limn+(nn+z)n

  • 13
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 《吉米多维奇数学分析题集pdf》是一本涵盖了数学分析各个方面的习题集合。这本书主要由吉米多维奇编写,旨在帮助读者巩固和提高数学分析的知识和技巧。 该书的内容非常全面,涵盖了数学分析的基本概念、定理以及重要的证明方法。书中的习题设计得非常有深度和针对性,既有基础习题,也有较复杂的综合应用题。这些习题旨在帮助读者对数学分析的理论知识进行巩固,并提供实际问题的解决思路。 与传统的数学教材相比,该书的一个突出特点就是习题的数量和质量。作者不仅提供了大量的习题,同时对每道习题都给出了详细的解答和解题思路。这为读者查漏补缺和查找解题方法提供了很大的便利。 此外,该书的排版和编辑也非常精细。清晰的板式和明确的章节结构使得读者能够快速找到自己需要的内容。此外,书中还附有索引和附录,方便读者查找和进一步学习相关的数学知识。 总的来说,《吉米多维奇数学分析题集pdf》是一本对数学分析感兴趣的读者而言非常有价值的参考书。读者可以通过做习题来加深对数学分析的理解,并提高自己的解题能力。无论是准备考试,还是提高学术研究水平,都可以从这本书中获得帮助。 ### 回答2: 《吉米多维奇数学分析题集pdf》是一本数学分析题集的电子版文件,以PDF格式呈现。吉米多维奇是一位著名的数学家,他的数学分析题集是针对该学科核心概念和问题的练习题集。 这本题集以电子版PDF的形式呈现,可以在电脑、平板或其他电子设备上阅读。通过这个PDF文件,学生可以随时随地练习和复习数学分析。 这个题集涵盖了数学分析的各个方面,包括函数的极限、连续性、微分和积分等。每个章节都有一些例题和习题,通过解答这些习题,学生可以巩固学过的知识,提升他们的数学分析能力。 该PDF文件的编排清晰,每个题目都有详细的解答和解题思路。这为学生提供了更好的学习指导和辅助。 总之,《吉米多维奇数学分析题集pdf》是一本对于学习数学分析的人来说很有价值的资源。它提供了丰富的练习题解答,能够帮助学生加深对数学分析的理解和掌握。无论是想加强数学分析能力,还是为考试做准备,这本题集都是一个很好的选择。 ### 回答3: 《吉米多维奇数学分析题集pdf》是一本由吉米多维奇编写的数学分析题集,包含了丰富的数学分析题目和解答。这本书的目的是帮助读者提高数学分析的解题能力和理解能力。 《吉米多维奇数学分析题集pdf》的题目覆盖了数学分析的各个内容,包括极限、导数、积分、级数等等。每个章节都有大量的习题,涵盖了不同难度和类型的题目,既有基本的计算题,也有思考题和证明题。这些题目的难度逐渐增加,可以满足不同层次的读者需求。 这本题集的解答部分是非常详细的,每个题目都有解题思路和具体的解答过程。这有助于读者更好地理解和掌握数学分析的概念和方法。同时,解答中也给出了一些解题技巧和注意事项,帮助读者提高解题效率和准确度。 读者可以通过《吉米多维奇数学分析题集pdf》进行自主学习和练习,巩固和拓展自己在数学分析领域的知识。同时,这本题集也可以作为学校教学的辅助教材,供老师和学生们一起使用。 总而言之,《吉米多维奇数学分析题集pdf》是一本有价值的数学分析题集,可以帮助读者提高数学分析的解题能力和理解能力。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值