已知自然常数e的泰勒展开式是_再一次爱上自然常数e

3c84bbb56d71e69cf2f1de93b946121e.png

> Photo credit: La Miko

用每个人都喜欢的超验重新点燃魔力。 (对不起,π。)

欧拉常数e并没有得到应有的关注。 尽管其他数学常数使用精美的希腊语(甚至希伯来语)字母,但e需要用简单的-好-e来解决。 让我们深入了解e的内部原理,以了解它的原理。

东西变了。 它变得更大。 它变小了。 指数增长(或衰减)是指速率取决于我们要测量的数量的变化。 以来自外太空的Blob为例。 它消耗了其路径中的所有东西。 这样,它会变得更大。 得到的越大,吃的越多。

我们可以谈谈Blob的倍增时间。 "每小时大小翻倍!" 该声明固有的观点是,其增长率取决于其当前规模。

我们通常以这种方式比较增长率:

6cac168d71571a69580097f1f17205e8.png

我们可以问两个问题之一。 我们可以问,"一小时内Blob增长了多少? 它会加倍吗? 三倍? 介于两者之间?" 上图回答的就是这种问题。 我们确定时间尺度。 然后,我们绘制一条曲线以显示根据该比例的增长。

上面我们比较了标准时间单位内3种不同的增长率。 在此期间,一个数量增加了一倍,其他数量增加了两倍。 中间的虚线表示增加了约2点。

但是,请不要让我们想起,增长本身就是内在的两倍或三倍。 我们可以用一条曲线表示所有指数增长。 重要的是时间尺度。

这就引出了第二个问题:" Blob需要多少时间才能翻倍? 三倍? 还有吗?" 现在,我们保持大小比例不变,并调整时间比例。

下面的下一条曲线从上方显示了虚线的增长点(大约2点)。 两种不同的时间标度显示倍增时间和三倍时间。

227bd5347c055170adc79b2adf21e61e.png

> We represent doubling and tripling times for a function through the scale on the x-axis. The function has doubled twice in the space of time shown.

无论使用哪种规模,增长都不会改变。 我们还可以备份并从每个刻度的t = -1开始。 曲线不会改变; 只有球门柱。 让我们仔细看看Blob的增长率。 时间刻度基于其倍增时间。

72e101231ab4d012bf7af36e4169182b.png

> The growth curve is identical in each graph. When the time scale begins one unit earlier, the volume scale is cut in half. The rate of growth is always proportional to the volume.

上面的曲线显示了Blob的增长。 时间倍数标记在时间刻度上。 如果我们提前一个时间单位开始时钟,则Blob的大小将减半。 整个体积比例需要减少一半。 增长率没有变化-这是一条相同的曲线。 费率是Blob数量的倍数。

我们可以采用相同的曲线并标出三倍的时间。 然后,我们将应用其他比例因子。 在倍增和三倍之间,缩放因子为1。增长率完全匹配体积。

我们如何计算比例因子?

当t以倍增时间为单位时,时间t处的Blob大小由以下表达式给出:

056dfdfd04f53ac1725b61c838f318d5.png

通过测量从t = 0到接近t = 0的某个时间段的斜率,我们可以估算t = 0时的增长率。我们越接近t = 0时,估算值越好。 t = 0时的比率是我们的比例因子。

b5fdb536efff84ce11442c1ed7ab5e19.png

> Better and better approximations of the scaling factor for doubling.

在t = 0和t = 1之间的平均比率是1。 我们想做得更好。 这是t = 0和t =½之间的平均比率

f54cc0ade514dda33f15097c26164197.png

我们可以做得更好:

26577a3194efd414c32587f5f3839910.png

我们试图确定的比例因子的名称为:对数。 在这里,我们处理的是2的对数。

我们可以使用n表示时间片的大小。 n越大,表示切片越小。 下面的表达式表示,我们可以通过选择一个足够大的n来固定对数的值,使其尽可能接近:

824810c1fa4fd67e930c6ba318d845a7.png

我们可以针对要跟踪的任何增长概括此公式。 如果要监视三重,则将3插入b点,这将告诉我们如何缩放时间轴。 它还告诉我们如何乘以体积,以得到该体积的增长率。

173685783a3c6a67ff727d9105c0df09.png

但是那个甜蜜点呢? 那是2到3之间的数字,比例因子恰好是1。那就是我们称为e的数字。 我们可以在上面的表达式中将e替换为2。 我们知道,作为定义,log e = 1。 稍作重新排列就使我们表达了e:

480be56a3ff5ed98f3f6f0519ebf684f.png

在上述过程中,我们省略了表达式的限制部分。 我们应该把它放回去作为最后的声明:

ca550dda68c8d337e53c62059f23f1c2.png

我们对这个公式有什么理解? 我们可以通过另一种方式得出相同的公式。

我们知道,开始时,当体积为1时,其增长率为1。e的第一近似值为2。这是另一时间单位后的(非常)近似的体积。

但是,随着Blob的增长,其增长率也在不断提高。

通过将该时间单位分成两部分,可以得到更好的近似值。 在第一个½单位之后,音量为1½。 在下一个½单位之后,为(1 +½)²= 2.25。 让我们发疯吧。 让我们将单元数分解为100。

82b760d030085e1c737c0621672f4251.png

经过1,000次迭代后,我们只能保留小数点后2位。 这种收敛是缓慢的。 我们需要将迭代次数扩展到1000 s,以了解其前进的方向。

13f4dbd998f28ccd3d1b1de25bbc06d3.png

> The function crawls towards e in its own good time.

这次,我们基于增长率不断更新的事实来建立e的公式。 这是我们从对数路径获得的公式。

我们还有另一种方法来计算e的值。 我们可以应用二项式定理。 同样,省略表达式的限制部分:

35240012a09648c9cff4090fb3f5c3a2.png

让我们看一下前几个术语,以了解我们可以识别的模式。

k = 0

7a895ce0977a8754c9b6536ed7f0ca0a.png

k = 1

6fe8260ea1b71b85d30c7b408a7c6c9a.png

k = 2

5b7013530ac503231d69b7b0a439acea.png

当n变大时,分子中的1失去意义,该项的值收敛,如图所示。

k = 3

8d142617ce26381f53977d98c5617e49.png

现在,出现了一种模式。 每增加一个新项,分母的阶乘就增加。 n的幂总是匹配分子中表达式的顺序。 因此,随着n变大,n个项会抵消,仅留下阶乘。 这给我们留下了无限的总和:

2866476beef4ed73e68d175dcae65b3a.png

它既美丽又令人惊讶。 它背叛了e值的意外规律性。

我们将其留在那里。 但是,我们离e的奥秘还远没有结束。 也许再有一次我们可以深入研究更多-我要说-复杂的应用程序?

(本文翻译自Adam Hrankowski的文章《Fall in love with e all over again.》,参考:https://medium.com/swlh/fall-in-love-with-e-all-over-again-2ddc5d03d4cc)

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值