两个列向量相乘怎么计算_机器学习 线性代数基础 | 1.4 矩阵乘向量的新视角:变换基底...

本文探讨了矩阵与列向量相乘的几何意义,指出矩阵乘法本质上是对列向量基底的变换。从列的角度看,乘法是将矩阵的列向量按系数线性组合,揭示了矩阵作为基底变换的性质。当矩阵为方阵时,可以形成新基底;非方阵情况下,基底变换与维数变化有关,为后续的空间映射概念奠定了基础。
摘要由CSDN通过智能技术生成
c3723c56d31a094df19ae8d63ef16982.png ef1d02d728cf0b76bde86e3c62b8f3fa.png 260f57f1077601d638ac17c3e34fd869.png

我们即将步入这一章的尾声,在本章前面的三个小节中,我们学习了矩阵和向量的表示方法以及加法、乘法等基本运算的规则,并能够熟练利用Python语言工具正确的对其进行描述和表示。但是显然我们不能仅仅满足于此,那么在这一小节里,我们一起回过头来静静的思考这样一个问题:矩阵A和列向量x的乘法运算Ax有没有其他更深层次的几何含义呢?

我们知道,向量需要选定一组具体的基底来进行坐标表示,在这一小节里,我们试图去寻找矩阵向量乘法和基底之间的关联关系,从而挖掘其中的深刻内涵。最终,我们将向读者揭示出这样一个重要事实,即:矩阵与向量的乘法,本质上可以看作是对向量基底的一种改变。本节的篇幅不长,但是内容极其重要,他将奠定了一种新的思想方法,请各位读者务必细细体会。

b8a74df4323e99319cf4cbcb385541e4.gif 1.4.1  重温运算法则

我们首先简单的回顾一下矩阵和向量相乘的运算法则。这里举一个简单的二阶方阵A与二维列向量x相乘的例子。当然,运算过程很简单,在之前的内容中已经涉及,运算公式是:

 b9b1ef0c941aa0feffc8d47a4b56412f.png

位于矩阵A第i行的行向量的各成分和列向量x各成分分别相乘后再相加,得到的就是结果向量中的第i个成分。这个计算方法有没有感觉到非常熟悉?没错,这不就是多次应用了向量点乘的定义式么?

即:1707469904beac4ba6fb0832021d114a.png

b5edaac647817586fa0132201300eab4.png

对于矩阵与向量的乘法运算,我们如果从行的角度来看确实就是如此。常规的计算操作就是按照这个过程进行执行的,但是看上去更多的是一种规则性的描述,似乎也没有更多可以挖掘的几何内涵。那么接下来,我们试试继续从列的角度再来看看,看看能否给我们带来一些新的收获。

0171c195bed4dfb1decfbc98397535d5.png 1.4.2  列的角度:重新组合矩阵的列向量

如果从列的角度来审视矩阵与向量的乘法运算,会有另一套全新的计算步骤。可能相比于前面刚刚介绍的从行角度入手的方法,大家对这种思考方式并不是非常熟悉。但是实质上这种方法从线性代数的角度来看,其实还要更为重要、更为直观一些。这里,我们还是用二阶方阵进行举例。

 a8bbb74921c26d09491209caded4c0c3.png

大家发现了一些规律没有?我们通过这种形式的拆解和组合,也能得到最终的正确结果,这就是从列的角度进行分析的乘法运算过程。

依托前面的知识我们可以对其进行这样的描述:从列的角度来看,矩阵A与向量x的乘法,实质上是对矩阵A的各个列向量进行线性组合的过程,每个列向量的组合系数就是向量x的各个对应成分。

这种理解的方式似乎有点新意,我们按照列的角度重新把矩阵A写成一组列向量并排的形式,然后再将其与向量x进行乘法运算,这样一来,从结果的表达式来看,他所包含的几何意义就更加

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值