清华 词向量库_word2vec 构建中文词向量

词向量作为文本的基本结构——词的模型,以其优越的性能,受到自然语言处理领域研究人员的青睐。良好的词向量可以达到语义相近的词在词向量空间里聚集在一起,这对后续的文本分类,文本聚类等等操作提供了便利,本文将详细介绍如何使用word2vec构建中文词向量。

一、中文语料库

下载下来的文件名为: news_sohusite_xml.full.tar.gz

二、数据预处理

2.1 解压并查看原始数据

cd 到原始文件目录下,执行解压命令:

tar -zvxf news_sohusite_xml.full.tar.gz

得到文件 news_sohusite_xml.dat, 用vim打开该文件,

vim news_sohusite_xml.dat

得到如下结果:

02fc3c138e6ffe3db29b73d2e4b6fec5.png

2.2 取出内容

取出   中的内容,执行如下命令:

cat news_tensite_xml.dat | iconv -f gbk -t utf-8 -c | grep "" > corpus.txt

得到文件名为corpus.txt的文件,可以通过vim 打开

vim corpus.txt

得到如下效果:

7d95b31b62846bfb7bd069ed7e130ebc.png

2.3 分词

注意,送给word2vec的文件是需要分词的,分词可以采用jieba分词实现,安装jieba 分词

pip install jieba

对原始文本内容进行分词,python 程序如下:

1 ##!/usr/bin/env python

2 ## coding=utf-8

3 importjieba4

5 filePath='corpus.txt'

6 fileSegWordDonePath ='corpusSegDone.txt'

7 #read the file by line

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值