wabua.cn cc.php,eDrawings

本文探讨了机器学习在文本标注任务中的应用,特别是如何训练算法模型进行文本分类和实体识别。作者指出,数据质量是关键,需要大量标注的数据来确保模型的准确性。同时,面临的主要挑战包括处理长文本、识别复杂语法结构和处理罕见实体。文中还提到了标注工具的重要性,如Brat和Prodigy,以及模型的评估指标如精确率、召回率和F1分数。最后,文章强调了持续迭代和优化模型以适应不断变化的需求的重要性。
摘要由CSDN通过智能技术生成

OzsgSFNGIFYxMy4wNSAKSQAAAABCAP+N472uR+G9rByavv+N4z3AeOk9308NPlp42uy9CUBUVdsAfGbuvXNnH1YFVAQVBEUZZhgWYRTcd0VEcRcVBDcUcCONm4aZZlqalpqW5vJimpWWJYOVWmmZLW+W5pKZbe67Rjr/ec6Ze5kL6Avo9//f+39anPNwuPd5nrM+y3nOuUMCFQiVaS1mc2wrc1Rrs7lR6sDMXrljMifkt4qytTbj/+LNUZZW+IGYqLh4hJCw/IlNiPwT9iDpn9CuMiw+p41tZ/cJW/4hQkkb4G9NcZli7+ffIkXFGyg4MmfS6AlTx2QGTcgZlZeRNzNyIvAwIso8wvUHD9vawfvjn/JT9iy8fbKIPRbkcWJ1N+Uoy/N+n0wuatWxUBmt7pA7KStnbCuzAjFWWwLyEx949unwNxd+y4cfSWh+ffT7a1/77befkBkT9cM/o8oS43O95sZHC+/jnGkTLcS2wb/j/H2cMwnA5LDZqAfauifIk0mY+edGB/DrDosVXq843zb+x8lt+TGZWRlTJxSE8XmZ03Iyp+eHh2nyMrMy8zInjc6EwqxJGRMzBziR04lbAoVPCWMnZxRkuxWEh/GjSV3MYar87MzMAnMYB5jMYbx1DGmYMLWrWfLDtBn5+ZkTJ2fkFUTVng4L74XZWreOrPb/yp0QmZ+dkZc5JnJU7piZmBrJ8qeOMqcuUSI0pSZpeBOFwjwmJytran5m0OjcCbl59rA8u7l1rM0SHx0VNLYCHCWB4eGJdeMwRD423cdrxVjtN1ET1H7kWXuP/W+V4gap1GZpkcjVnZRZcxDmKt4SZYsNiopw/aUgL2NS/sSc/Pyc3El2830qaCb/aAXp+6PsUa7S8H4IeQjIAxgiCWJdP+2KGpMf50P+C3cbJub/V4eJmQ4TMx4mtpoPk8fp4/Rx+jj9/zatdimPcl/KXeAoCQwPr1jvomuI0dw6Li7GEmvDGKMqMEZVg9FaM77+AxbL/6n+wq0bGxdtpbqFJdZsi4u7T39F/c+Mkv/QG+bH8+xx+jh9nD5OH6eP08fp4/Rx+jh9nD5OH6eP08fp4/Rx+jh9nD5O/zen4XXZ963jxrY5RB5wUTkAo+rvVTe2w7uyiEWK+289K10/dPuYt7gCD/gJGTMz81pFhbHgMbcDISMkT66djJ8dcGqAKVihCCd/NVf6KxL/Gh6mz86dkBk0MSNvfGZefhiXMSMnPx6/U5CRl6QJn5LmicbkYHYLMkkLRkWbbVGtnGzmmOmtDDR7kt2zZ0/4FPpm3P3ftMTG2B7wZux93zRHm2Mf9GbM/d6MiouxWB7Era3Ob0bX+U3rfetps1qtlurfVMGblgd0iw0P4Qe9ev9+McdYzdYHvRpb91dj6v6qre6vRtf91ft3TpT5P7Swpe6vRtX9VXNdXiXj8P78Wq3xcVEPIBr1gHEYa4uPfdCrdR+HUbEPWJSi4+If9GpM3V+11f3V6Lq/aq37q5a6v3r/cWi2WaxxD3rVXGeJcV+iUZb/MILvSzMqOjbOUn1NK6SumwAkcX2uAMEBAvwVYVGMnvLwJFJY4YELXhOoSEaHvvzSroRN44kZ+fmT83In56d9ygBsj21tM1viY6Lio6xxUbEWS7QtYlruhKkTM0kLxlb6Y1wE1iEy8J+s8TGW2KgoW7TNEmeLi4+PihiblzFtxOjMSbg2I2ZQvSXeHGuNi4+xWm2xMVHRUTb5QzPtrUgnxUTFxMRGx8XZ4uNjzJaoWNlDheQhzII5NjoG/9jirJZYqy1iwgxMhL6PqVhsMXE23Hw2S1RMLPyN4o7BVDF2szXWZo0328wx8KdCzFt8fCzWpTAyXIfYGGt0dMRkwjKW9jFWLAujrTEx0dFRFkxnJqVjsUbHRJujYqKsFjMGbFb4C6ESHxMfF4PXgZgYzH98vNkCf6Fsx2C2rPgvlriY+JhoTDRi8kzoaTOmaIuKj4+34dIY3CwTCkmTxccCcms0VvOs0XH4XfjDTBd5W5Q5Kh4XR1vNcVHkL5SIOT4Wd48lHv8hPtpqizHbIiYXEiqYSIwZU7VY4uOtFqj8DFpuxdWPwS1iiY7FVcXlM2l/WWJwc0bHxMZinFFxUMcZLhr4nVjcgLjetihg3QL1n3G/t2a6ahkVE2+xxFqsVjPuAtwvM13YMCJMHY+uWMxAjMUWj2sz4/6ECmfe/7VC2m3xePHH9ONwk8fGm+MicmhVY63x0JNxVlzleDw8cLlYVUtUHNalrbF4WMJQsOI/ubiLMuP2xCPRHB1ntthwP0TkSFWt+hatK27HWCxFrGY8ki22OMyAWFdzvM0ai0cnVnYwh9FxsfhvYmWroSTWtdrXaGXjLNHQt3G4qeJio6zhYYYxOfmTsVaN15WCTKwMw6/mKvp6GDc6d+LkqLREBNGZdld8cCQND44k0cGRruBgMZY6P7Ii5jNiWk6+PXdSOEVjThteJzRRLjQR1QTDyqNgw8PTDGLkrJ3UKDxMR6kFVbZEupPFchOiAtlmDsrNmxo0JiM/O4K0siWWloyakDFpvLzoQQ/ZzHFuDwVh9jMmTMicEBEU1doWND0zZ2x2QUSQS2dxe44iqOYP+ZljJ8KiNqa7Gth94403TnUDlq3Q/Q/NMkW68/r2sw2RJWjyjIrnoEkqnmsJQcHZCoUi1fQpWGcKMNVKC5buXj1yhX3xr3llGE4A+KnQTxwefi7zD5oaSTD8w2+q8C9qFikVjILX68FkhP8FRKFU022FiD/1XnnpxenPEvx32MulQYcWVIdfTOk/F35GoUQu/KiJEluUTZQ4a4Lxl0n4MT4HxpsI+DEdB6aXWBf8JznE4QRnJzH+DyT8wd/8khBjW074316oSzz73PIK/gGr2D4UlrWPG35hPrTPfDQfklTTNgl/eN8ljsItOwj/l3sudrzT5OM68Z+lQiqc4CwL498s4Ye2Edsf2kbW/rXgv4lSUArQ/gK0/0YJP/CO+Sb4gXdcnzrhf0UhKHCCs1cw/mel8bnrpWmOy2OjHYB/2e48x+sBkQ639pFjFylU0z4WHdLhBGcWjP9ViX/cnw7oY8CP+9kBfVyX9p/OIx4nOJuO8a+S8DewrXDUfz/lQ8DvgtvI8KNK9bgPfqTG/9EE418u4cftYcftQtoft5Mdt1ed2t/KCAxOcGbF+Jco3ecvzDFx/sIcqyl+JWIUIv8nDMiAE5ydwPiXSfihb6GPAT/0LfRxXfB/qUd6nODsS4x/vNQ+MDbxuCwF/DA28XgtrWn/uuEXXtEIGpzgDMZnqdK9/UX+of1l/NcC/5d6QS8A/wLwr5HwA+/i/ALeZfOrFuPzFQUWmDC/EPC/Uem+vsEcENc3mAN14X+6STDhBGcw/jdL+GHsw7gH/DD2Aa6pfHHH7wT8ThPOnBj/k7L1U+xfWD8r9W+N14dXNEiDoH9J+xyW+I/6e5ZdPbA54X/Mjmfs5nF8jdtHwWAJ6eK/RCtocYKzEox/lkx+wRwT5RfMsbrw30SLtDjBGazPbyvd139x/sL6L5u/tejfEwbBIMD8FWD+vqt0X/+hD8T1H/qgLvizjIIRJzgD+VXgvn7a3dZPe23WT3f8SC2oBVg/iX7ylcQ/7lOH2L+4rx2V+veB7e+m/6ASaH/oXwT9GyDhx3OqVNQf8FzbLdMfajF/59NkPiSppglS+4BsF8cPyPZK46fG7d8ExieMHyLfx0r4gXeoA+AH3qEOdcE/H9p/vhpnwP9zMvkr4oe1pxL+Go//+SAaAT9pnxESfpCNov4AsrGS/lBj/i06QSeA/iCA/rBK1r/i+gm8y9bPWsiv6SZkQrB+Ev1hrWz9F+cXrG2y+VUL/FlGZEQwv4h+eFbhLn9F/QHaRqY/1GJ8WhnEINAfEOgP3yjc9TeQkaL+BjKyLvgPwZbTIRZnhzD+jyT8B/bNdawb7kPwDwme43hJF1An/Gmg/6dxOEvD+JMIfg4nWz8d6TAgi91qzS/z/nGoI+CnGLtt+IcOjyAX/qZFkC4RaMtX9AOkCi3tBwXLMAoEawVxyi2HusxncVaICllYj5IleqtD8xzLnvEn9KbumeTQ7A+U07vwJKT5taHXGOrmyeEMdxIH9NpL9LblCo7bH91LBHpWzZOOzVdYOb3XCb3BtaG3Cei9wuFsIVpI6HWQ6H07ep4jefNnhF5sp2LHwX7fJcroRRJ6HWtDzwy2TxMVznyQjwrodZTo4fo4cL1Ie+J6luL6yuu3gfTf8KdqQa8AbNEsJc7SUboS6HWS6OH+cuB+I/RwPzpwf8rpPUfoedWG3l2gd0mJs9PoNKHXWaKHx6MDj0tCD49TBx6vcnq5hN7x2rRnMczl6QzOclAOA/S6SPR6XO7p6FzcldDDuQP/LqfXi9B7pzb0jCymh1icXUVXCb2uEr0OZe1KXx24iNBTmJqXfvDvRXJ6Zwi9sU/Xgt5PZEGBbA/aQ+ypbhK9RVNWlqo9FhB6C0Y8X6o6tUBO72tCb+WcWtAbDbp3mgJnXRC0ZKqpu0QPj/9SPA8IPTwvSvH8kNPbTeh9XZvxch7onVTg7Gv0NaHXQ6JH5rprPsBcl80HwDpYoPPBfc0UqVZPT0gH30CWEmcFeG4ImF5PiR7MdbF+MNdl9QOsHQVav1rQ+xp8BScVODuP6wr0ekn0YK0W5wOs1bL5AFiXCHQ+1IJeDtjG0xmcFeO5AfR6S/RgrRbnO6zVsvkOWPMFOt9rQe80tOclJc7u4rkP9PpI9PCYTBTHJx6ribLxCVgjBTo+a0GvC7RnmgJno/FYBXp9JXp4ziWK8w/PxUTZ/AOsDQU6/2pBbw/4wg7hqSf8hCch0HtTkucT2i5zzN42ifjD2CVLHcPCn66TP+YSyIRLKpxdwvhLJPygK2A9gegLoCtg/aFO/pIt0EdblDjbgvHPk/S17gd7OpIujiL6mnCui2P9wuF10tc6gD+jgx5nHTD+tlJ/rElc7Jgc3jYB+mOv12JHO+eSBNl6sSMPUk1t1t8D4LvazeNsK9rKw3oxX6oP1AXqBPWBukCd6qKf7wb/224dznZj/HapPng8OWCMQX3wOHPAGJPV5+UnIG1Ym/okQ32sPM5CUAipj06qDx5PpXhckf7H46wUj7c66YuesMZ6KnDmifH/JdUHfOjdei4m88XlW7EPGO9Wn03naErrMM+tPll37lOfq6AvXmWvEvlI9MUzCvfxhvvFLo433F91qk8pyPxSBmelGP92RqyPc9EZ+7Yupx3/SnjdAfDlTZ86xg1dY5fqU2F309ixijGO6fBAh2MZTEec/O6GOCSppu8U7oMNV8IuDjZcuTpVpiM0WEcWZx0x/qFS54BgAIUJOgcEAyhMssF2XKAqU7WDjVZGCW4dsTLFYBVO1+EMa0o6qMwW95ZzuLWco3YtR0cCq8TdolSI9GReYEhSTWVK95UNrCFxZQNrqC6Wbn/w9PQ34Kw/xp8oNR6WNA6QPtB4WAI5QPrIGi9zNtHfazNTd8EqXaLC2Wq0mmjuGdJggFEtrjwwqiutPDWuz27oI1h5BFh5Xpbww0ATZw4MNNnMqYUkKAXtAGaOADPnRak/cB84xP7AfeOQ9UctJEF/8JxDfyDojwSZZSoOZrBMKw1mp5NapjCY3ddn2fiqovnDKg3jGTR/HfTHh0r39hIlG7SXTLLVoj86gKcbJJsAkq2NzDIEbVi0DEEbltWHWoa7a1Ofc+DVPaHB2WF0WAP1yZH6H6QASAOoD0gBkAZ1qY8n7Ax4anAGkiBeNl/AmhDnC1gTsvrQ+fJ1beozGuqTpsEZtiRIfeJkkhSsJVGSgrUko0cl6Zna0DsGS82XapyVoTKy3iyQaWpi+4GmVqn9aqwZeEKdoP2IJH1VJqmBhiipgUZd5s9F8HxdNOLsIniWlWJ7fVQ+iXgDob3A67WzfWOHJKnTfUBCg3yuoJV1p4pkU7KUEBEGuziBwwnOdiGcYGJ3GMkNFlhMhEF6/I5SDBMxCnA1buyK5bNqZZKQOkmdBAIgCTqjiVQZcD2Kagds6VdSO5zOdB9R7YB8Hq5MFTUdkc5XSmr6VVZgBVA7BFA7oD75Er2InYJ995Z7ZLCJLuiaqznVSNLVsL+z2oQzLAlMQGynNBLAHhBHAtgDspFQi5l6EfYYYCQIMBKiZT4i8IOJPiLwg8lsHOojAk9YNTZO1cqghbBkv2LA2Sa0yQA9ZZU5iMDJJzqIwMknI0YdRBdqTEwJxDwMOAtEgYTYNqmbXN5XQgyPd4dsjCMyzueRVBx0dIw/WGaDdw+GOYJhDvQsMm8UyCXRGwVySVY56o0CyVSzyhWCGTRfj7PlaLkeiEXJXFHwI7qi4Eci1quIOqLkakiVBU+BcOWQNOaRU4fpXdEZ9LhNrxABuFvhPgxF0wGGocx0qIXC4AnmNpgORGAIUn1ga06cU3h+OWRzCnDRzoKZJXbWgxtvNewpwJwC7coElWknsyOx7bhbtCOxTblbJi2oHXmzNtKiH0iLjmqcxaAYIi1uKty1IdHuBm1IZnfXQrXfAr5QsLsR2N3BMr+WOIfBryWbw9SDTedwTVX7TaAGv2LA2UI8n2FB+owQU9GgAhKoA8REhzYh1sxFrNR7HklFYkPwtLp259odqWKgwKtVuOlYJYcpksX5PE3OuxJSkGr6XqIKprHoinEtiXYZ1Q7naeq+5upVehX8PgTTVuhoc8JKr1RwrEg4B8ylHBZnOQCTglTTDxJh0PRFn5Nrv/fRED4NRudpBmenASYFqaZZSpEwONdAbQbCYNLAuulG2OnscF5sZ9qhtJ31KkndoIQ5GKpIwYiEhWO8wOMEZ8cAxooOjwk/IREGTx6snUAYdq+kRbqZa+TQGpd6U0LzCGFaa/j92h1XB7OIUzBKsbq7YKXeZcDZLoBJQarpPamdYZ8P2lrUGKGtZdUFerSdqRAf4loA6MDSq1zVZTnSzow0sn4Gtf5nHc5+BpgUpJrWS9V1bQI63DYRHA8/nvuBG6Yfj7N+AJOCVNM6iapru9Hhcp06ZI1cI6r36d1dMHWhnYVdALva+XWJsGstcrjt0TyC6h6D6sKYQscAdo2p1ySqrlVPXKEc0gr1sNWNhOpGGnAWCTA2waG6T0nDyhUiWeq25VZaF8Iwc8kcFmu8CdaNTSzONgFMClJNWyumL93vFd0tFRbqw9Y4BZTFFBPOUgBGKMWECQdJhMFccHNal1ZaKWswkaqZvkIO6MOwTAo5ALuWyWESVSxG7eCOBaquUImE2i2TlCoeUiwRqoTqFTCXr+hxdgVghK7oMdUISfCBEAdhDlRBiIMwl6lcN4tEt3DNVK6toDXsNuHsADpAtAYfqYrijhgQEz2pj0QSLARH0EIVzhYCTApSTSslwqCWg34EhEEvAlEv69GO/0kSVDdlR4PCMlqNs9EAk4JU0ysSVVfAssO1eQUbdY9mAG+CTt2kx9kmgPHMgU59WSIMvg9QMoAwRICAkiERLvWmA9fdNr1PdXG3ulX3HFT3nBpn5wAmBammlrK9VvAiiHut4EWQDSW61wp+hJoNpWYwlCwmnCWhJDKUVkhVdAUzOlwbWbDp+mjaNhDaNlCPs0CAEQqEtl0uG8NgQYpjGPw0tWtb13KIyHJInLOkeQvAkVGgwVkBwKQg1fSSbFUCM1ZclaTmfdgaLwcP53IdzpYDjNByEO9NZHuUoskJmo3M5KTRJNTkrKluHAgSx8OAM6yNE93YW9avbhuUpTJlscN5OkMrVH269upVYi0xFtcqiIeuQhy6wmlwsoKmKJwG2KUpZkpU8QpIQgOBKoQJwhZZ7RS26lUnoRj2+YqVOCsGGKFiJSbcQhYvACNIjBeQhrE4Z2i8APj6ajZnVoO7qsSIM6wkGmHOPC/VEiYlBJgBMQg8g8n68MvCPzBu/9Hg7B+ASUGqaapEFXZKRDEOoWIyMV5nZTgF1gaQ4SgFYJcMHyuTpuDVEqUpyLlH0qNGGEpGBmdGgBEywlBaJBF2RWmS6gJRSaA+7DQ1wDQ16HBmABghA0zT5yTCIL0hPBoIQ8grSPWH791iCEwt1uKsGGBSkGpCMmUYghZEZRiM9PvqStDOtI2vkdZ+kEgPAWkTosZZCMCkINX0gszagcXCbT/p0ailjUEtbczirDHApCDVlCPVGDRDWIuBMGiGsBY/kpG1HEbWcgZnywHG6zCMrIUSYTH+3aWqJcg6+GFGVjEE70IfwyKlFVx9/KLU1CDuYHECwrBYgdiTrcl0Ja5w8VRZkyXCeFFGTIXaBovVQiPOFgJMClJN46Qag64oEhb3W+qiL0JlSbXFGi8EVy4QFhYC7CK8VKqxK4yk1C2s4NEMruXgsoA+Bockg1x9PFmqMYg+cVSD6JONapjEchfhvPu7LBQInNdSHzcG6wNGtdAYYNeoXibVGOQCyAcgDHIB5MMj6WMl9LHSiDMlwKQg1XRBIgz7sm4RVyQCQSLcsSaEq1m2hD3gJN2jwNkegBHao8BUw2Vxc6AVi3Fzkmouyl0aNxdZYze6N1Qz2IizSBRJ5K6XTB2HwDVRHYcDOY/E7PEBn4EPjzMfgElBqilMFj0n1hKi52S1pHGytJY11dwiYd4EG3HmjWsMmltzWWiZqMq4XH5yYjS0LHN2TYntAmIlRpytxmoNEFsgNSkYyqKUBUNZJmXrLOwM4OgCEYsMALtEbKgsmk20cFzuVHkVaTTby0/UtIpJ4ImwmHDWDFs7UEVPmfXoFvpIjr7WZUZWNjSEdJAz6QzO0gFGKB3WIKXMWIa4TtFYhg062XDtWMfhuhqG62oeZ6sBJgWppnXSUuA6TLnbLTht98M71oyw5ILChieokUEuhW29RBVEKuhOQBVEKuhOj2TlKwR/baEBZ4UAk4JU0xsywqLRIcblPXx1i2GHAywOUNiUyGVxbJA1suhmgkaWuZkeprpXYK8NPE3oCsAuT1OINHlElcWlGCfIPE006JB6mmo6eQ7A5NltwtlWtJVMnmYSMYgxFzf3IMZctrlHI8xptHlNiRn0WPt26nCGa0dCtRQy16xbUDTZnKpdk1Ynwr4G0/FrJc6+BhibgtCRFxXuXnewrUSvO9hWj8TdvxU0761qnG0FmBSkmprKYqTFXVqIkZbt0tLTLHSXtqZtuxxcLvP1OMMTRQ9t+5ZUSxcBUktXCFF1srNjrRejPRCBCRoCRPErkEtDOC8RhtgxGDni9jDEesmad3cdmzcG7OUYDc5iACYFqaanpdEkHqN1udESZVb6w6j5/0CkERjqwj8Auwz1uUr3DULRwQQbhDIHU51l6nKQqeBdAo1Xh1zepTkSVTEiw+UBSZT50x6mugVQXfCnCQUAu/xpTyndtyVFDyJslck8iHX2SwTCKgjuQwin0COX+/CcNKwg7E08AAMLFITCPby6GwPqbowCZzEA4zEFg/lz2R4OKIDiHg4c630ka0U69G66DmfpAJOCVNNOmekIPSyajtDDj8SQKoDpW6DAWQEix30LoMbBMl8XHDYQfV1wEPWR6NwMbDUwKpwxAJMCLNWV7vYMxDmK9oy0OsprvLvW4zkJ1OEkI86SAEYoCQypLJkPU9RjxGPPD79/VAi+WlBihEKAXUrMcamDoaqwRothpLBGP5JlsgyWyTINzsoAJgWppp8U7ruD4slKkEZwMvSRqMfb4HjJNoSzbQTGECZ8TCIMe87gBhePWMIG/yOZS13A1dZFi7MuAJOCVNPHEmGXBUcIu87lP5ohnQ4aMhgEMIkZ5DIIPpEIw8F/0SCAQJlKBoG8j6v18VU3slZDEAVYA8JqgF3WwF6JqisMh1B1Bac/mup+DRoyKFZwvk2JXIrVPoV72Ijo0nRFwtsffiKFwMEF8GcKIQC7/Jn7Fe4xI+JJMNetII+mul2gul2UOOsCMClINX0qEXapc4Sw6wqSR1DdrVBdUCKFrQC7lMjp0moFqhWoWEAVVCtJQZdL393/yYuKK8uxDCe59tABcMQcMOLsAMCkINXkVLiHjbiduHPI2rnOynoXUNahkYUuALsa+YBEVbxbCqiKZ6ZrJxWq3YCmyWhXQgpSTQclqhAvQqaR63Q2TKNHslQdhqXqsBZnhwEmBammKVLvgrcLvF5kTLmu0Hn4MeUNBp+3CWfeACPkDXs+eRJVWBzFSBVYHGWRKrXYmq1s2gqbwHkKkSqw3w7OUxKpIkiExZtLXN7ERNl++8PosOdgFsGWu3AOYNeWe5HSXSSIEQYgEmQRBnXWYTeBDgvhBRCYo0eu8IKZSnebTFRxQN7LVJwazd3qqCbBxAX9Bnb7jcil38yQqILWDNozUAWtGbRnt97tWOfePaASVDjB2QGA8bQBje7fCneDTFQlwSCrpErWMRyIAaqgRwoMwC49cppUXTB6QZcEqmD0gi75SKqbDISTVThLBhihZCD8ptJdoxMJu66skA/m3XVxSyWD2gxUUTLALqpHFO5moBgaBEZCpdCgGi9VleWBsBCqC6FBsNUD1SWhQVuU7gaZKIhctxM8Gn39AOjrIIhgWIG+TgTRbKW7fiMG9MHCLAvoq/PcjQSnI0TzwT6EAbmi+UqU7m4NcRa5LmB4BL17AHoXphAIXRVyTaEnle4apBh/JYZa147qfRp5NCyQEIIljAbYFYI1RxZqLQoiWJVlguhhvJ3eEH8Asgh5A+ySRT8q3EWCuOcDIqHSnk/dx7MPqM2w5yP4AOza83lXtpEHK5a4kQcr1iOxuO+CxX1XgbO7AJOCVNMO2Z4puJDEPVNwIT2Sps4BcZSjx1kOwKQg1ZQtDS5Ym8WtS/G+qYdXNpQwfWHfEit2Spi+ZN/yqFRdiAAWb9qB6CiwFGTTl7Yz0H6w/VmpnYUQsD9DEM5CCIwhTLhQ6a6vi9HWoK/Loq0fRsvpByMLAq6FfgC7Aq4HKyoFqIobJXbpzIfYzj0WiWc+Kvy+z079fE6lpYNEZklysB/MYDj1IcQInWAGx8AMTle474iL5yDFeAAZVbirgp6DrKD6fg997wdSHQ3OQTgJifX1IeAc7ALehUEK9yAP8TSkOL5kVOHGCnoasoLqmpEnxjyQ6jGoK5yHFMqEr6GuZVDXIbIWFm9ngBaWbmcQFw3awhrB/UTNtAWfz6nkgZVTPQD9CvczYFPsQ+jXrdCvwxTuarN4clZU3GV1hdtV6MnZirr+ENMu7oF1PQctDGdnhcPCWWjhw9DCn5NhzLtuDq7XruLIIdwcTKhG4D++phCPNG6SFkjIafl1MmvvaF2nifRkR4FRsZySZelVAX7VnHYnMCL39XzmzkWCGxcJD80Fi5cRaoFTLtwvLJBgysW3Ehdnfp1EbokELuDGyDm2xg6JixH3XlNsIitYukwVgHLgAv6pbgAfEhcc5oJx50J2CtwFQynctSZx4fiXQO6nBC7grsq0F+6VPhQXKpaR9Yj7rSciDGeyMBdfS1zAjYoiF5gjh4wLSp+cOfQecW/EPVF+qW6oboy453Red0Lq2mky0Z0mBe4UBq/rDG4VsTncj4G5YBcj/yaMqOnVnQ6xU3AHOaROMVdi5Pj84/MpKzRV3YCBAQxRlsgUMRBmeA53DEcEjdgmbvclVLo7IUI6/vv19jLH0MWfONLjo0sBJgfzvZjdsuO/8iOEFaff6P0P1dwC3Modv90Nv702+BWIUVZ/S6aWFfG/kWAmx5cLG8XYMUyOLwNck+PLbqf39qDbe27jBGeA30n4h+SSrYTgXOi/3gFw8ruLHNfv9i/18KmWf4wb9jHV1V2QTKfmPQk1NIeIGuAao0ZVWoWiLnfn2uHGteOhUf/tzrXDjWvHQzcIz0oxRb/OJ6jJrcythjtemmh1ZPVbWXEvyYjTFemzl53OwixIgdDFL127v0ihJGoHjSkCQRGpwRm2WDSw+3tXGpjXFu4ixCYZ3nV8OXi74y/tM7QeflUubq16fW7FwExilElKnOAMPNtIGpgYp13Ej2nZHw1+EthHnsINZBcbCzecXWosUaC/Fkgba9Mv6Y2mmf6lhsYSqV38UhKteAlTVmjikbA1Ai0GNp6GFqSa8ohAN7ouXRUvJYfYZ+lS8v5VLrtFKLj+M7339z71h2H1tdHPv/Brn6CUyZNGjFj32rrXsvvNeX3EiLYjP1479tlvXvdb/8q0bVtSMYreb4zZUOlahoZ0dVPrNVoGdy6r1xp0HI9VTo6DQHywEyPINc+gisA158L0B8HkPvRU0y1pHPx1ahVZQBa+t9MBdyH8h/sP7neEfybqOrMrTnBGPjPgfr+CXcSPaVW+X8Fd8alyTbDbNb4q9Lnqc5zgDPBvJz3iURGOYhd9V1Iwwcj7hFT9uydCH4d+HJph/7nX+d6j7KldU7uO736pz2t9x3eH//jOc1+ds0bdmXx7ILbP6/PXnoz9qeFPuB+Wv1bFvAkkvaPmlXgcYe2EBl+wSpNawxu0Rr1Jp8H8m8k+MsxFiE2AfeT/DMPhLumIdv+XR9iLms1P7L3NUPaB8aD9+PWpdoBJG758C6Gjt8TWC1XTlhyrrnrVdaVFvn4V/Akte0n4Aa4Jfrc+qnQHxnhpLfhg11D7373mJObvMJYFRn5mHxg4uYL/D8sRasaKo/6nctpPnVhxjDFIHGOb+vhu8sUJzvrAVctV8APPIv76IT0r8P9ULvIPlOCfhN9tYU7vczb9LE5wBvizJPyBRwfZz12cQdo/Zc9+u691opx/OX6AKvivmCOV2n90FfzAv4hfav//gN+N/0rt/7J04dWcNyaSeff3+Dn2Q2tX2PeO8HI0+XmDKFhCTjmdXvcAb+pNhNro9/B/McG4H+qRKSpeeAX3CTBKMbLoky3zPpmHE5xhPW/eJ5ieShJkmIZDpIdpOyrRQ+hYEFAEek7n/msivT9/d6eHZQAseC56ji1Zjiyc4AzTy3Jger7S+H3uyAB7mGOG/ZBf97JPXhpq37r0SXvpRx5lNbqGpGJ8IS2cT9CyOIM9Fy8Jv3LJF/bSQxMTAf+ruV/Z/1g6J7Gm+BG9t4XoFDfgnMkNHc5ugJtF6v8rN1Ptv30zlfB/+ONB9kUnptaYfzdZibQ00SLCf66EPyPgoP2doFGEf1vQQXtYz5nu/D/4QqAKJVe4AbLkBo8z4D9Dwj+gfop9/W95hH+xLnXiX9b+IyT8Y7d/bt+cP0DiH+pSU/wy/mXtnyr1L2wIgO+n5Xfe5PY56Srpmlw179a/y2Ezq5AtZIXlGH+KhB/22sE3C/hht1+6yrmW+DfBPUYLuYWcsAnjHyDhB0cOePYBPzhypAvgaol/Fzj0V6tWq4RdGH8/CT9s6oJDDvDD9r109XUt8TcG/hmO4YTGGH+ahB9cQuBMBfzgEpKumqwl/mQYnyF8CC8kY/wDJfzghgFPMeAHN4x0tXUt8ZuhfXxUPirBjPFPkl1lD4EFgB82vStdpV5j/Idg/MBV6gJcpT5RduEe7AYCftiwqnT7Yo3xdwT8cPuiALcvTpZ9qgD2OAE/7O5W+lRTjfGfhP6FTzUJ8Kmm0bJPvUAcIOCHozeVPqVUY/xZ0P7wKSXyKYpcCT+EkcA+D+CHWJZKV83XGH8a8A9XzQtw1fwY2YV04HMH/HAurdLVtzXGfwn4h6tvBbj6diORz0kum3Jh21dLwT4CSxh+iK1EriBCHyn9SG7w+Lgl/Abwxy3Pte3G0PKpXf5K+YUdBpyi7aNWjJnP28APjT6b9vesMs1pE/FSzf/5pVDPOb4A13vlz836hvkBAN94c8v7k5vODgH4+48T969p6WMhIcb/nv1NcbRHW/Lu8SVnUFLLruRrGmd/uMT2+Ri+aonGXZhz7YNhp4YDvO82Qu3u/pMN8O+3Wt/rnvv7Pcrzor+nFDjJkZ/J5R+3bHeXwk7nxy2dzucXArzo73Nt3/uHPj+1S+t7O5c0IvrOXym/32JWTL8N8Ioxc651Xhf0OqW1fdS68oPXaR3HXWi7NfkmwH/P+uFS+fZ/v0/57D8/8PLsv2h9+x+/9LFzDwmgPvPzS0cvFn4B8Oxv/tx87czi48Rt9X7i/ox/nztE637jzefOzjlG20QB1y2pNWZrbIw9vl1iAggUplVYC6ZtuwSW2GCWVhEteIblVLxai+0zjVqt0ekNJqOnBxvXtk0C6+3p5aFqHtqsSeOGbD1vHy821mKO0LWxxUVHRbZu2Tw8VOPjW6++n3+DgEBNQKPAoKbBYSEt8Jj5qJLO+N8IwwEJMs5HucY5/ID9JxvnPfGYnh0yO4SOSR9LfoCPJZR+MzUJ50kwPp3O2SFsnzIN24fGMNKnYKblB8AzoZ7Eckg6NXwYS8fkMBaeLtNAOdsHSocR7f/U8O65foruufCMn2J1JswvKBdLyRyGi9CKnEUVv8EzCO1c4qeAHyincNDrUD6MDXp9GJmDTidAQa+Xb4fyMk35dviBcgoDn/i3PTjfA3XEhAl87hC5lDzg3KH8AGgHpxOgc4dmh0D5nGOzQ+YcgzEJ7QC/PXcWyn0sz52FHyinMEqC8qMXUdLRizgF/pPgN7YPlCffZPsk34T5Am0Cv50aDuXryk8NX1e+rhzKAYI2gvLfyUxudxfKV2fS32hb4aTIpXEVAUR+8L/f8fylcxly+IHSnUvWlQe9vo7Ma2ib5JvQJsAPlEIbOp3ryo9edO4BnqF9njt77hDUC6Fzh+Dp5JvwTPl2aAVaL3gWnoNyePbcoTnHAJ5zTJEDczayU3KSPTE+zmaNMrdu2SIspGmTxoEN/f3qeXsYjLyW1Sg5pFboGJPKU+/j5RsQ6xVQv1GD4KDQZuHNW0VYImOi28S2TWjfrnOHHl1790zrOzh1+ICR6RlDRwwaNnBIv/4pfXp179alY6ckPFXJwUByRV2ajnxpqL8BaXCB04CcuAgZUIkel/dHaRqAjU78R5xhWy1N09+EnzdqEM7AMdgfvqilRk5TGnj0+kNgVhpfYhT6oxIVMgolKqdBKBEQhAU4DWkc2YEQDFhslejhGRbphRLQo0sEp05gMQ9pOgGLNghETdNtUaI0+OKVEj6LpERbBKcGw04N6GJCmgbLmzTNFgTPgKPZqMHZFviCJHWFYjxbIEnj03hcnqbA4gwzpcRFJSpBiQuw6MTlDIYxDyrYl2GhnCthaTkIU7h6gywJDSr5PMGNxz/Zi8Aeb7hU+wjizzNMfWPkoMjPCHxmpSkvOGEx2Svo/abfuZSGdl8qUn5dUZowiWxmHN73+ob+bV9LATjued+iPzM/LiRe0xm7CncuTiXIVxQbpnbY13IXGWIvvzFy8uGT+yh+wBVHvkVhyuu245uDG7+mtH5d8d1PJ0l5wx+czk+IcFHEwFDj63l6mzyMBsa7fj2G9fJgGV6BsDjgNIyK5329fMBPwvv6+AXU96/HexhYvVqnxeOm///EEk/9yo2lU0W3zj5pn7KnjKgv7bwP2nPT5xBViZjjjbEo9CRL4TgsvBf9Sqd0b6PTOTnTzRyvdAWpbImHJNXUqAq94aouEj2Aa0bP5cdmaeSNR2W/BiSpJjMZQG1wkvjyh2QAgRzBsF3UozzI5eLIrqPDaHnmmcxMNIPAf2Zas7IV9C9PDbFmqfgGBD41bNZwL91Nnj5zJlOjPkAs6oCR/plH1a8QuFXGlTFKTQ8CNxp1ePR6zS8aImtGP5/fPjCtBcDrBv7+4nfex2IBXtUudGesbjnxJv7SctfRF9huAwD+oiFUfHsW4c1rimHu9FnkQ2JTDMu9+rzy3r/oM7+0zPkg5HOKB6FPrpd8T/E/n+84/cl1yv+pYb9ev0DgWcMDRsbcyLpB+Ww0aseNRjcpb4dHD715l8BXxvhnht66Sfx5ZzL/zNTcvkMGjDXLmrXinpOs26FZv78YcX4e6Zhjmcsznc7PCf7QnbuOTiqX9jVySUdFmWMjWzPRsa0ZVN+fbRbdoiXPBLB+qnoa1tPH5MUHBYc0DW3WnAsKadwkUB1ji7fCB7651q2iI1qyigAlw3l5I9/6HOK8eDWn1nkZTFyL8GZhzTkffT2thvP08DHqef8GqGGTRoF4QGyvNCD+t8NkuyfVFK90+46UZEyD4SJFtwRV48ygrmaaYsX3gnhvv8urS87Hh9AkxJXAxYVKt6u7ibUFxMAKk+7DDKq07UihfRdo/BuNaBEPFLpid8iW0nlY/+EWTJrAF78kYuAmANeAaAZLxzdqVLNq3YxCF7hAA05uCHByA+i1keiBWwVcKaLZJ8VgPwS9w0APwq8FCL8GenuUbve6S24i19frHq7nttFkmyuBIylKt89/ETsciIF9LoW1B1Vzp60Ytyj2YjXEhNHQcxDMThM4hiIRc8WpSA4A6RDbQ7RkOjjb4PyaAOfXgF5W5c89SA4N6WjTQ9Arg80TONUkwKkmoLdL6XbjOzHagR4Y89JZubpOgwI4FQhn5ODDSuTDPB9IxFwBTpK3QIrWe4jK5cA5XgjUg89ZkHO870v0XGFckndFupz0Iej9DJ0H95IKcC8p0FNXeMP3drO/YOxnv3ytQ1n33SPsexzD7SvP1qu1t1d+YfBNItHz3KzE/OwXHKKV2PSnmQ6PN11WYucm8HpY+J3wxcHuFqPeRr7X6EetQWo9wvPU8qG2YEFfomlq4Pn8AODMx/JZyldqvFbD7hZ5k1pE1F4EaxMsN3iXWkRgI/opwMJ0Oukz7tZjhU0k7WcSS7K21uNXZJ8tbluyZuFb1FKi1iOc1wMrCH5ztyTBuwH8w2/XDkL5dD9qS1ILitqS1FpWHVkcTNvwhyPUlgR4zrGw8A9OTD4J8J1wam/C87NDXHYlbLScnf+73uZubWILDOpLLEzahtTyBGsN6/rEwowi2sZnKdT2pNY4tTeJ1jWcwqJlDjYm8SLdozC1Ke9nbVIbkz7vbmHScvpu3LaoW6K1CXYkeJHA2oSnccsRaxlsyWsHyfdKf6e2JK2v6sjkkx+coG1V2QqlbU7fpW1LbVbJCn2HLBzZU7ImT2LUSgUzJTuHSbYnsD68B6Pr07df2oD0oUNGDR/vM3HEuMEZg4b1H5iS2rN31+7YpmzfjotuZW7Rkg1p2byFavjI8WMmZXFKNWPwwIaFmtVzJp5TmTTeuvoGnWd934AGgUFNmoaGRegS2iZ36NylR7c+vfqamjcLaRzcsFE9fy8/o4+W58PCI1pHRtnYxPbx7fj42MSYaGsrPspii7O3SdDkTJgyNjdz4ugReH6mu8xZHfoKm49oL7Zesdn6FTVhcTm2Xg0mI5iwevjshQ5bu7+ARakB09aA0rBFCZasCVu4JWDygmmLrdr+oAuZsCmJTVtndaZtIxU2W01GAUxbBCuGk5q2JIQL27p6AfMApi21cPVRLErE/OC1CrF7dcJXOENwlwS2dtOEKGryYms3DdYarbBFia1dbDrDuvOLBsPYkiUfANRgyzcNs4jN3C14McL43U1ebOsqcDm2cNMAVmEYm7yNsAmO4TTFFmzrgueYxQSxhVsiJILJGyWZv9giVuJybFKzovl7g6x1BW5rHaxvsrVuVzUesbeJdTGhydst8I8V4GsBb1uvBbh7ygaSMJaB9oE+A+2LuwC80bi4y0YjOeeLqP+sPfHeXtC073dBQ73G1GdmgxZHg4bZVIOG7Sae3PnM7uz5jOgpgxWOfE8LpRT8pUgpkNa4InG9G6lwFo1UbCNe3b9w/peCzk266s1nSDzGivlMxxXUk0vXvY3rALapNq6zqS4QPh1bL2gcW93XvY1G4kHetdE4eRetL133Nn9C6uuz+ZOBPtdIW/X+8lpA7y/FdQ9Wvd7f03br/f2EJtSrS1e9pWRev91i6Ym3W4jrG6xqtG31ONefHUgi9jafG2jffA7WN9GzNugKwIu7DLqyuAv1SNLVjbatF869bg4aBvDBO4OGHbxDPZJ0pZv+Dwn6zZ7+z+5s6imjK53vPdq2vvdSCtbeoy279h71QlJJ4nTStvW9t22hr7TuwVpHcXZcMf2fjitoex68s3HdwTviegirnWMr5c2x1esm9ZhTP9xk4gIZdGXyrkFXNpOvg2z+ZPO5zZ9Qjzld3/Rnadvqz/b+krZb7++Xnuj9vbhO0nWPyhHFXuIxt8a1SbS365DcmYFvOQzs15/Jy89l2nZsz/IKFcsOGTigPzd0cHpaCq/S8HqDhyc/YNCQ4aNGZLF+nt4efH1fLx+jSa3Bq1m3Xj369e3PBzdu0Kh+gC/vXc/Pv2FgEw049UKaBzdrzMa3TWrPTsibmMuOzxo9QpOUEB8bE22Oaq2bmDMhO3NMxsihwwZzkRabtY3GpFNrlRxiWF1aakqf3j1htW2vc62e4ZGtLJrRY8ePmzIpf3IuXgjBifDf7oL/X749sJcosokwou7Nc8DPmw1XluHcDj8Ae2TjXhjc4nTQYLIAng7K89sbnUe0zb3RdNkj7gnPyz08dZd7kE8X6Tqq8tI7kgUtL/1L5ejML8m22ejMNXk70BryBY0dsLrTH4iRWLQD/9Dy1Su/VK5eCfCXyo6qRZsonkWbTDs8daYdFL/ovoeFKPGLPL9EsqWU57fh+9NBG76nfA5uEXiK8hx4atHve6MX/S7yTNQlMrku97h4nfJ88Xpe+u47eelkcbhjvTs603pX5LmHk/LcA9R2QfwuXcaiHk7Kcw+n9e7qlfT51SsXbdp9Z9Emise04+J1yvPF6+7u9cQvFv1OeV70+4bvA09RngNPKcjX/7hoS2ybOKZFeCgT0jyMMWiDGb3RgwloGMoktLEwkZYIRheq4UwGz2BvtmVEmIWzRIW1bsVySj6UY0Kx1ck1DQ1q2JjThKoYlm8S3EwbquZVrVqEhYY05byDffzqq3T6UA9fLy6wUXADP863Xqh/gDo+IcZii7Sa8czb8V/m53ELvGpdJXDCdZKJeEeIJ/ShAidaVQkscZ19J96QuuCXB5bYqgRmiGd1wKytC355YEZklcAb8bOP4BOoC3554E1slcAP8fwN+Djqgl8e+BFTJfBGPEEFZnhd8MsDb+ZWCfwQv7QIgR81xe8e+CQP/JhRJTAD8IuBGXXBLw/MmFYlsATwi4EldcEvDywprhJ4A/jFwJu64JcH3hRWCfwQv0QIPqS64JcHfjxTJXAF8IuBK3XBLw9cCZL8bE2+nmofP3s8cdUUXn3F/mLJM9RVI/vSqSAPw650nxzDKiS/UOXTPZjYJmLLPHef3X0S6d2VqWrLiCIbxPczieTwrO9p//D4L0h5sdf7gWdjdnYip2U83Hf9rzc9YSvvTq4CNYVFo5ZBsP2GuoXrPXr2nR5MdlBkEQCfeg5O2+4P8B+9Snx+GPQtOSvbZyi1ZqjunTbFwseSHaBvJs7w+Ca7GbGJ3puaMf6WKZGoDe8Wunl0sD6+XBFPtpIGG3sWJyrp890WiL4d8POUPG/hP32GPtP6xVjdLRKFs2YZ9e5Q3mZ4tF5B+dm+XowSgDqW+IRt3FAC8Keeeo9332J30vrmenT/kNal/jvu6kexV/SeGXvFNjzyKW2H5/e8HxhwgOrn1BPUhPg3rjftFn7qAGpJfBpfUD8PtYnCop3/pu353hHd8RM2uvtO/TxnSXnX01OS5p8Mjyeqwm8d/nomkfZX4QV3leaPXn1+o3235NLYy+XdexKf27VL8RcHp/0wCOC0c9RaojZpn6Gtzi8YQ3i+SL1B1FbKGK++LBDb873L30z8/PohslOVNmVXuZDr7iOi0dHvTX23cO/dHJfd5O4veu9y0ZK9RDXqWbxmmfoyfb7bgtYvijhLnn/+4tRVRcSe2lXu7lPavr7V+bCNlOf67/T5jfZL/EV3X9Pze+affPctWsf3jpw64Pw3bduxl9mdtM11x6nviNpcSy51/zDgAG3PwgvRe458KrbnjL2iegaqWrW21R1iW2VkjsnKGZs3fiJjNOmZyJYtmNYWKzN53BSmXWJbBhtCTJQthk1LHzCM1+h4hlOqNEjhyfpq63sFcl079ujei537bNFCvl/fnt06d2rPFz4z7amCmRM0rULDg5r6NfSux7Vr2ym5PZeXO3PSBDZjzMih7JRR2aO1Xbt07JBkj481R/BRMXFt2iUksgMHDBnGexqRXqlWcSOGjBo2mh8+cvDQfoP68o0b+Qd4NQjkNQadh7dPPU1a/3Rsc3Xv3Ytv7I9VwuYhfGxkRIvmYSF8eOtW1qhoGz+raPbCwgXPqOcIT8+f92zxXH7Ok8ITM6ZPVU2dPGNKfjZehuCS1/9GvfD/GoxFw7+qiIbrd/s73AK/HA8tGqhjni4jj0o0uAeHPSrRQJ39FGdtRQN1gNGloyaigTrGaBs+SDS4u8iqEw2yrYFKosHdXfafRAN1mFEXZU1EA900oC61/xHRUEQ3ZUDHqa1ocA9uu59ooM42yuf/lGgQA+No0JtLNFwjoiF3Yv747LFjsjKZISNGMR26dGXGTZ7CjJqSw/uyngojMrEeWh9vtYdBq2F4JafumdIvffDQ4SPZtknJHflpzxQ+O3vhLD51UJ++vbv1YgP8Gnjx8xY8PX+O8CQf0MivcXCTUL5pUHjz1q0sbG7+pBmaTu3scbFRkREt1THmNvEJSYlt+dT+g9KGDRgIR7LVSG9S5YweNWzIQG7k0Iwxmby9Q6eu3Xr04uv5NPRu6h/Et0/u3LFn9xQ+sEF9L18dy88rXjB3YdEsLjQsokVLPsZmjm5ltXAzpwtPPMlPnT555pS8HK5Js9CQMH7CpIIZ0556xiUUHrvU/ivcfW8RofAajORFZ6STpxgmp0R7/PCO3eMjsk8wgJ2rjGAKOfK5MsU8VYJ6CtXX0Q11b90wl+1SrFtgpFB7vkD9RaP1Dcn9AaofND0b/wkBhmg/9yJnCL5E9jvTdPu5fzX4moQRfqdPV/3Z4IVQcnG0Mdu0vuEXjSiefmHeYRRngbqfR0J4z8YAn/X4QWMIvhFOFlnPNN2lJtEtaPl3+q+b0fIYIzxPcWabAm3eYXwGxZmuOv/DpKMU535u35FIEkb4g+ZFTnvE44TI2xffXz0p8qY98u7PFGd7ft+R6F8ozgL1+R+GniEf8cT8TDpa71fKA0KRP029QvHU9xzwK8UJvF09SZ/pjt94+7qIM9s09AzF2UwxV7nvVvHftM3nqb7753mywN1QF+vWuczCrT+cbY/QPBKJltypfvL6/feI69DY9UK7GXt/Pgxwix65vYM+2fIxWfSva29hMUbacOadrVFTFBTPRUty7LfO+YTWv8qDoyOY3qT8cIzNxv8zg9BtFDPr7tC7tN9/urficoKa9suBK1svrW9I+2KnM+Jabx3t34BLJdcNwf8i8B8Xnc5LTeiICLsZcOlPV18vvAXv0n5x3F5x+YtGtIcPXNl0R+zfiGtt/r4RbiACsuT6xL+jW9AxE3YTyime0wc33eEzKJ6Ftxy3E8IpniVvf79jy8dBZC/qyvtlH87Yu34/4c3xR9m8z2lbeX1U9vnPh2ndzQd+OcD/M5QInoMHT34x4x5tB89D/b761tXmKy4fuHL+h31HSPtfCrg06SgdMxHXSq5rj3zxPa1vwCWPE3TMhN1ceEt7RHx+xeV3f6b967gNeOiY2XQn4po4Ztr8PfHvyJ/oOCm5HnZzwK9i+cJbV0+Kzztui3gKyXUbdIxpb+10rnO+fZ3270/3nr+37xbt01l3v/sHxpIiQwHOg+EZL4zOZJBRxzAcz6hCmzFpA0Yyw19YwhhsFmbEKxOZVyZMZmwNGjELnihknpw9i3m5aBET3K0rY1WFMKtXvsyo1FoO6RQaJT9ywKjBY0aMZQN8Gwazk9oPH8ryvl7e3LCeI/umcQsKn5k5j42ztmrJJsZFtmLnzpsxk50zd/oMduqcadNVT08qHj7/WTZ40lNP868uXfXSKyuWqzp1iekT3497cemaV9ey9sSoSC66XVRbO9esiappCA==

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值