ndarray python 映射_python科学计算_numpy_线性代数/掩码数组/内存映射数组

这篇博客介绍了Python的numpy库在科学计算中的应用,包括线性代数的基本操作如矩阵乘法、解线性方程组,掩码数组的概念和使用,以及文件存取和内存映射数组的方法,详细阐述了numpy在多维数组处理上的功能和优势。
摘要由CSDN通过智能技术生成

1. 线性代数

numpy对于多维数组的运算在默认情况下并不使用矩阵运算,进行矩阵运算可以通过matrix对象或者矩阵函数来进行;

matrix对象由matrix类创建,其四则运算都默认采用矩阵运算,和matlab十>分相似:

a = np.matrix([[1,2,3],[4,5,6],[7,8,9]])

matrix([[1, 2, 3],

[4, 5, 6],

[7, 8, 9]])

a * a

matrix([[ 30, 36, 42],

[ 66, 81, 96],

[102, 126, 150]])

a + a

matrix([[ 2, 4, 6],

[ 8, 10, 12],

[14, 16, 18]])

a ** -1

matrix([[ -4.50359963e+15, 9.00719925e+15, -4.50359963e+15],

[ 9.00719925e+15, -1.80143985e+16, 9.00719925e+15],

[ -4.50359963e+15, 9.00719925e+15, -4.50359963e+15]])

由于numpy中已经有ndarray,再用matrix比较容易弄混;

矩阵乘积运算:

对于ndarray对象,numpy提供多种矩阵乘积运算:dot()、inner()、outer()

dot():对于两个一维数组,计算的是这两个数组对应下标元素的乘积和,即:内积&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值