matlab 暂态稳定性,(参考)MATLAB实验电力系统暂态稳定分析.doc

本文介绍了电力系统暂态稳定性的计算,通过求解发电机转子运动方程,探讨了常微分方程的数值解法,包括欧拉法、改进欧拉法和龙格-库塔法。并展示了使用MATLAB进行常微分方程求解的便捷性,以及如何绘制函数曲线。最后,简要分析了简单电力系统的暂态稳定性问题。
摘要由CSDN通过智能技术生成

实验三 电力系统暂态稳定分析

电力系统暂态稳定计算实际上就是求解发电机转子运动方程的初值问题,从而得出δ-t和ω-t的关系曲线。每台发电机的转子运动方程是两个一阶非线性的常微分方程。因此,首先介绍常微分方程的初值问题的数值解法。

常微分方程的初值问题

(一)问题及求解公式的构造方法

我们讨论形如式(3-1)的一阶微分方程的初值问题

(3-1)

设初值问题(3-1)的解为,为了求其数值解而采取离散化方法,在求解区间[]上取一组节点

称()为步长。在等步长的情况下,步长为

用表示在节点处解的准确值的近似值。

设法构造序列所满足的一个方程(称为差分方程)

(3-2)

作为求解公式,这是一个递推公式,从(,)出发,采用步进方式,自左相右逐步算出在所有节点上的近似值()。

在公式(3-2)中,为求只用到前面一步的值,这种方法称为单步法。在公式(3-2)中的由明显表示出,称为显式公式。而形如(3-3)

(3-3)

的公式称为隐式公式,因为其右端中还包括。

如果由公式求时,不止用到前一个节点的值,则称为多步法。

由式(3-1)可得

= (3-4)

两边在[,]上积分,得

(3-5)

由此可以看出,如果想构造求解公式,就要对右端的积分项作某种数值处理。这种求解公式的构造方法叫做数值积分法。

(二)一般的初值问题的解法

欧拉法和改进欧拉法

对于初值问题(3-1),采用数值积分法,从而得到(3-5)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值