方差分析
方差分析是分析试验(或观测)数据的一种统计方法。在工农业生产和科学研究中,经常要分析各种因素及因素之间的交互作用对研究对象某些指标值的影响。在方差分析中,把试验数据的总波动(总变差或总方差)分解为由所考虑因素引起的波动(各因素的变差)和随机因素引起的波动(误差的变差),然后通过分析比较这些变差来推断哪些因素对所考察指标的影响是显著的,哪些是不显著的。
一、单因子方差分析
某个可控制因素A对结果的影响大小可通过如下实验来间接地反映,在其它所有可控制因素都保持不变的情况下,只让因素A变化,并观测其结果的变化,这种试验称为“单因素试验”。因素A的变化严格控制在几个不同的状态或等级上进行变化,因素A的每个状态或等级成为因素A的一个水平。若因素A设定了s个水平,则分别记为 A1,A2,…,As。
数学模型:
显著性影响问题转化为因素A不同水平下各随机变量总体的均值是否相等问题,即检验假设
是否成立 (2)
不同水平下的试验结果,i=1,2,…,s;j=1,2,…,ni;
n=n1+n2+…+ns:试验总数;
总平均:;
总变差平方和:;
组内平方和(误差平方和):,随机因素的影响;
组间平方和(因素平方和):,水平差异的影响;
H0的拒绝域为:
检验结果:
高度显著:;