crust算法 matlab_[转载][分享]Matlab求解线性方程组、非线性方程组

求解线性方程组

solve,linsolve

例:

A=[5 0 4 2;1 -1 2 1;4 1 2 0;1 1 1 1];

%矩阵的行之间用分号隔开,元素之间用逗号或空格

B=[3;1;1;0]

X=zeros(4,1);%建立一个4元列向量

X=linsolve(A,B)

diff(fun,var,n):对表达式fun中的变量var求n阶导数。

例如:F=sym('u(x,y)*v(x,y)'); %sym()用来定义一个符号表达式

diff(F); %matlab区分大小写

pretty(ans) %pretty():用习惯书写方式显示变量;ans是答案表达式

非线性方程求解

fsolve(fun,x0,options)

其中fun为待解方程或方程组的文件名;

x0位求解方程的初始向量或矩阵;

option为设置命令参数

建立文件fun.m:

function y=fun(x)

y=[x(1)-0.5*sin(x(1))-0.3*cos(x(2)), ...

x(2) - 0.5*cos(x(1))+0.3*sin(x(2))];

>>clear;x0=[0.1,0.1];fsolve(@fun,x0,optimset('fsolve'))

注:

...为续行符

m文件必须以function为文件头,调用符为@;文件名必须与定义的函数名相同;fsolve()主要求解复杂非线性方程和方程组,求解过程是一个逼近过程。

Matlab求解线性方程组

AX=B或XA=B

在MATLAB中,求解线性方程组时,主要采用前面章节介绍的除法运算符“/”和“”。如:

X=AB表示求矩阵方程AX=B的解;

X=B/A表示矩阵方程XA=B的解。

对方程组X=AB,要求A和B用相同的行数,X和B有相同的列数,它的行数等于矩阵A的列数,方程X=B/A同理。

如果矩阵A不是方阵,其维数是m×n,则有:

m=n 恰定方程,求解精确解;

m>n 超定方程,寻求最小二乘解;

m

针对不同的情况,MATLAB将采用不同的算法来求解。

一.恰定方程组

恰定方程组由n个未知数的n个方程构成,方程有唯一的一组解,其一般形式可用矩阵,向量写成如下形式:

Ax=b 其中A是方阵,b是一个列向量;

在线性代数教科书中,最常用的方程组解法有:

(1)利用cramer公式来求解法;

(2)利用矩阵求逆解法,即x=A-1b;

(3)利用gaussian消去法;

(4)利用lu法求解。

一般来说,对维数不高,条件数不大的矩阵,上面四种解法所得的结果差别不大。前三种解法的真正意义是在其理论上,而不是实际的数值计算。MATLAB中,出于对算法稳定性的考虑,行列式及逆的计算大都在lu分解的基础上进行。

在MATLAB中,求解这类方程组的命令十分简单,直接采用表达式:x=Ab。

在MATLAB的指令解释器在确认变量A非奇异后,就对它进行lu分解,并最终给出解x;若矩阵A的条件数很大,MATLAB会提醒用户注意所得解的可靠性。

如果矩阵A是奇异的,则Ax=b的解不存在,或者存在但不唯一;如果矩阵A接近奇异时,MATLAB将给出警告信息;如果发现A是奇异的,则计算结果为inf,并且给出警告信息;如果矩阵A是病态矩阵,也会给出警告信息。

注意:在求解方程时,尽量不要用inv(A)*b命令,而应采用Ab的解法。因为后者的计算速度比前者快、精度高,尤其当矩阵A的维数比较大时。另外,除法命令的适用行较强,对于非方阵A,也能给出最小二乘解。

二.超定方程组

对于方程组Ax=b,A为n×m矩阵,如果A列满秩,且n>m。则方程组没有精确解,此时称方程组为超定方程组。线性超定方程组经常遇到的问题是数据的曲线拟合。对于超定方程,在MATLAB中,利用左除命令(x=Ab)来寻求它的最小二乘解;还可以用广义逆来求,即x=pinv(A),所得的解不一定满足Ax=b,x只是最小二乘意义上的解。左除的方法是建立在奇异值分解基础之上,由此获得的解最可靠;广义逆法是建立在对原超定方程直接进行householder变换的基础上,其算法可靠性稍逊与奇异值求解,但速度较快;

【例7】

求解超定方程组

A=[2 -1 3;3 1 -5;4 -1 1;1 3 -13]

A=

2 -1 3

3 1 -5

4 -1 1

1 3 -13

b=[3 0 3 -6]’;

rank(A)

ans=

3

x1=Ab

x1=

1.0000

2.0000

1.0000

x2=pinv(A)*b

x2=

1.0000

2.0000

1.0000

A*x1-b

ans=

1.0e-014

-0.0888

-0.0888

-0.1332

0

可见x1并不是方程Ax=b的精确解,用x2=pinv(A)*b所得的解与x1相同。

三.欠定方程组

欠定方程组未知量个数多于方程个数,但理论上有无穷个解。MATLAB将寻求一个基本解,其中最多只能有m个非零元素。特解由列主元qr分解求得。

【例8】

解欠定方程组

A=[1 -2 1 1;1 -2 1 -1;1 -2 1 5]

A=

1 -2 1 1

1 -2 1 -1

1 -2 1 -1

1 -2 1 5

b=[1 -1 5]’

x1=Ab

Warning:Rank deficient,rank=2 tol=4.6151e-015

x1=

0

-0.0000

0

1.0000

x2=pinv(A)*b

x2=

0

-0.0000

0.0000

1.0000

四.方程组的非负最小二乘解

在某些条件下,所求的线性方程组的解出现负数是没有意义的。虽然方程组可以得到精确解,但却不能取负值解。在这种情况下,其非负最小二乘解比方程的精确解更有意义。在MATLAB中,求非负最小二乘解常用函数nnls,其调用格式为:

(1)X=nnls(A,b)返回方程Ax=b的最小二乘解,方程的求解过程被限制在x 的条件下;

(2)X=nnls(A,b,TOL)指定误差TOL来求解,TOL的默认值为TOL=max(size(A))*norm(A,1)*eps,矩阵的-1范数越大,求解的误差越大;

(3)[X,W]=nnls(A,b)

当x(i)=0时,w(i)<0;当下x(i)>0时,w(i)0,同时返回一个双向量w。

【例9】求方程组的非负最小二乘解

A=[3.4336 -0.5238 0.6710

-0.5238 3.2833 -0.7302

0.6710 -0.7302 4.0261];

b=[-1.000 1.5000 2.5000];

[X,W]=nnls(A,b)

X=

0

0.6563

0.6998

W=

-3.6820

-0.0000

-0.0000

x1=Ab

x1=

-0.3569

0.5744

0.7846

A*X-b

ans=

1.1258

0.1437

-0.1616

A*x1-b

ans=

1.0e-0.15

-0.2220

0.4441

0

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值