判断当前时间是否大于零点_锁区间法处理含参找点(取点)&一些烦人的含参隐零点的处理技巧...

本文适合有较好导数及找点(取点)基础的同学阅读


众所周知,隐零点是导数里的常用方法,也是证明导数不等式的一大重点。常规的隐零点,只要得等式,卡范围,隐零点代换然后求最值即可,而在解题中,我们也会遇到一些含参的隐零点问题。参数的引入不光给隐零点代换的选择带来了不确定性,也直接导致隐零点范围难以把控。这篇文章里,我们就来介绍几种含参隐零点的题目及其处理技巧。

为方便阅读,以下先给出两个基本原则

1、隐零点代换的基本目标是把原函数代换成熟悉的基本初等函数或极值点所在区间上的单调函数,再证代换后的新函数在极值点所在区间上大于(小于)0,从而说明函数在极值点处必然大于(小于)0,本质上是证明了一种更强的命题。

2、找点(取点)即用零点存在性定理说明函数在区间上必然存在零点,目的是寻找定义域上函数在该点处大于(小于)0的点。找点本质上是对函数极限的控制,一般方法为:把函数放大(缩小)成一个可解的函数,让这个新函数等于零,解出一个点,从而说明原函数在该点处小于(大于)零。如:f(x)<g(x),g(x1)=0,则f(x1)<0。


一、隐零点求值域(最值)的逻辑梳理

650dbc5752e823c543bb8d5733c7531e.png

首先,这显然是一个隐零点的问题,但是,前面提到过,隐零点本质上是证明了一直更强的命题,逻辑上是不能求一个准确的值的。一时难以抓住这个题的关键,那么我们先做。解题中,很多时候都是在做题恍然大悟的。

6f37a612123e34f7714c5d709938bfc6.png

不难发现,对任意的a∈[0,1),都存在唯一的x使得g'(x)=0。所以此时g(x)一定有极小值(即最小值)点。

我们已经得到了一个隐零点等式,下面就要开始选择原函数里代换的量。显然,我们要求的是一个精确的值,所以,要让代换后的函数只有一个变量,所以,选择代换a

f7303d91211541e5477cec685a5b6546.png

我们得到了代换后只含一个变量的新函数,现在的目标已经很明确,求这个新函数的值域。求值域,我们首先要知道函数的定义域。而前面我们卡出了x0的范围:x∈(0,2]。然而,我们能否直接用这个范围作为新函数的定义域呢?我们只是卡出了极值点的大致范围,而这个范围并不一定就是新函数的定义域。所以,这里要通过a和x0之间的等量关系反解出x0的实际范围,只是这个范围刚好就是(0,2]而已。

二、锁区间法解决含参找点

e94b870d7aba72c0c880307bbba17f38.png

(对,这就是著名的2017江南十校……)

75a64ac04a127fabd5c32a87fb7705e6.png

找完这个题的点之后,我惊奇地发现我找的点竟然跟标答一模一样……刚好通过我自己的想法来解释一下很多同学对这个题此处找点方法的困惑。

在形式上,我们可以看出,要找点的F'(x)的特点是,一个只含x的函数加了一个常数a,而a的范围是R,不难想象,即使我们取再大的常数,我们加的a都可以让导函数的正负无法判断。所以,我们要取的必然是含a的点,而且我们可以通过加绝对值的方式来约束a的范围。

0d8b391f50d49e2b42fc7c95349311b5.png

首先来找使导函数大于零的点。根据前文所介绍的方法,我们要找到导致导函数趋于正无穷的部分,显然,是e∧(x-1)。而1/x的存在导致问题变得麻烦,所以,我们这里通常用 锁区间 的技巧处理。我们令x>1,则

14187806a1edb40dbe41ca7c390486b7.png

这就是我们第一个点的由来

注意,这种锁区间的方法必须保证找到的点在所锁的区间上

同样的方法,我们来找小于零的点。

令0<x<1则

349f720924488ee62e1895b6a1b2d819.png

我们找到了两个美丽的点

(吐槽一下现在这些标答和教辅,从来不把完整的思维过程呈现出来。不知道什么时候才能有一本真正不隐藏思路的教辅书)

我们已经说明了函数F(x)有且仅有唯一极小值点,下面的任务就是证明,当F(x)有且仅有唯一零点x0时,证明x0<2。

a5f2fee3dfc7ebd6756a78282cace0fe.png

在说明F(x0)<0,F(x)有两零点时,同样用到了锁区间的方法,请自行体会。

值得一提的是,这里所找零点的范围,较小零点的上界必须小于等于极值点范围的下界,而较大零点的下界必须大于等于极值点范围的上界。这是一个重要的逻辑,请自行理解。然而,当我们使用锁区间的方法最终找到点时,惊奇地发现找到的点的范围刚好符合要求。不禁感叹出题人的水平之高,亦可见此方法的正确性。

所以,当F(x)仅有一零点时,即F(x0)=0

f5c3b51d1bb54def224cf6e1b6131a1c.png

所以,x0<2。下面,再来分析一下2018浙江卷22题的找点。

ede4d18de05e1f3869fa479dfcfaf477.png

标准答案看似巧妙,实则不易想到。我自己的方法找到的点和标答一样(再次体现题目锁区间找点法的重要性),不过更容易想到。

9a13bce3bf36a41594deb3b61373b98c.png

找点的方法与上一题如出一辙:保留主要决定部分,丢次要部分,适当放大相反部分。不过这次有两处关键:1.在找x>1的点时,为凑出公斤式,并利用x>√x>1给a乘了一个√x,这里不乘x而乘√x是为了保正kx的次数最高,从而使kx仍处于主导地位。 2.找x>1的点时,给解出来的点+1,是为了满足找到的点>1这个前提。

51ef15102e053d2e26e10bd2a5893fd2.png

我们已经证明了函数存在零点,现在,要做的工作就是证明零点的唯一性。

84e86bd803d0bbd9c1386f2223ef2fba.png

当△>零时,易知函数是先减再增后减的,我们证明了函数的极小值大于零,从而说明函数至多有一个零点。虽然极小值点本身形式复杂不易带入计算,但我们可以通过隐零点的方法巧妙证明。

锁区间的技巧在难度较大的找点问题中用途广泛,希望读者掌握其关键。

三、用两次隐零点使题目柳暗花明

6ed25f97e3e9523bfbdde5e2e1d352ae.png

直接看第三问,原问题等价于证明x∈R时:

7e0a7763a2eb16576c88355c218bdb73.png

首先求导判断极值情况,发现函数有且仅有一极大值点。要证明函数存在零点,则要先证此极大值大于等于零。

08ec7e6c662df0c26873c20ba2312d4d.png

用得到的隐零点等式代换原函数,得到一个单调函数。我们发现,根据我们卡出的隐零点范围,并不能证明这个新函数大于或等于零。我们试图寻找更精确的隐零点范围,也难以奏效。

我们知道,不含参的隐零点问题的一大难点就是卡出恰到好处的隐零点范围,然而,含参的找点问题本来就不够容易,要卡出含参且精度很高的零点范围简直是灾难。所以,我们尝试隐零点的另一种代换目标一一再用一次隐零点等式,把原函数代换成一个易求最值的基本初等函数。

b7d045d9172c646c2d310a4c38975623.png

问题迎刃而解。下面,再找一个小于零的点即可,可以参考我之前写过的一篇文章。https://zhuanlan.zhihu.com/p/126292354

最后,留一个最符合今天主题的题目作为思考题。

b9ea17c40be35ec22a9b11a725d281f5.png

b935514850b894ec3328bd58c6066e5a.png

本题的导函数找点也采用了锁区间的方法,在找x>1处的点时,通过采用同2018浙江卷一样的加一的方法使点>1。

e36568c2ccbe883da915e67d70acbdf4.png

而隐零点证明同样采用了两次代换得到对勾函数的方法避免繁琐的卡区间工作。如代换成单调函数,则会导致证明极其困难,读者可自行尝试。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值