两边同时取对数求复合函数_第一章:函数零点问题● 隐零点局部显化单调性...

e3464c2893d9270004978533251f67c2.png

隐零点局部显化单调性

在估计一些函数的极值的时候,常常也用到隐零点的知识。

我们知道隐零点的本质是:在分析一个函数

的极值情况时,假如求得一个极值点为
,就可以把导函数的零点方程 ( 关于
的方程 ) 代回
消掉某个东西,来使得
变得更好分析。一般来说,在把零点式代回去之后,得到的会是一个新函数
, 这个新函数在
处的函数值就等于
。这个时候就需要先确定极值点范围,从而代换后根据极值点范围确定极值的范围。下面呆哥以一道题目来说明如何用隐零点定出极值范围:

已知

,函数
,求证:

这里实际就是让我们估计

的极值大于右侧的

那么我们先求导:

,这个导函数的零点情况我们不太清楚,所以再继续求一次导,即二阶导数来判断导函数的性态:
,可见导函数的最小值点是

所以对于导函数有:

这个时候我们发现,导函数的最小值是小于 0 的了。由于导函数先减后增,我们下一步需要判断的是它有几个零点。首先容易看出

,所以 0 是一个零点。

接下来可能还有一个零点在极值点

右边,我们找个导函数大于 0 的点粗略估计一下:

,从而说明第二个霜点在
内。

那么接下来就是要估计

的极值了. 由于要证明的是恒大于
,所以我们自然就想到去证明
的极小值大于右侧的

由于题目给定了定义域

所以不用管 0 这个零点和它的左侧了。这说明在
内的第

二个零点就是

的最小值。现在问题是怎么去定下它的范围。

这个时候就要利用隐零点了。我们可以把第二个零点假设为

那么:

这个时候

的最小值可以表示为 :

再去证明

来证明结论?这当然是不可能的 ,肯定要做一些变化。我们把
代回
消掉
得到一个新函数:

,这是不是有点像右边的样子了?

事实上,这里隐零点代换之后,

就等于

我们通过定下

的范围,去算出
的范围,和算极小值范围是一样的。

我们刚刚算了一个

,现在容易知道
是一个二次函数,它的对称轴是
左边 ,说明
上递減。所以我们

现在就可以定出一个范围来了:

但是,这个答案似乎有点不对,因为 -1 和右侧

天差地别。出现这个答案的原因是
只是一个粗略估计的范围,我们还需要更加精确的右侧。

这里我们观察一下,

什么时候等于
呢 ?

没错,就是

的时侯,这个点很符合,但是问题是
,怎么办呢?

我们可以进一步考虑到,二次函数对称轴两边的点的函数值,是一样的。

的对称轴是
,那去直接把
关于对称轴变一下,不就好了吗?

根据对称轴性质,

关于对称轴对称的点
满足:
,所以便得到了一个新的点是:
。我们代回
。看看这个点符不符合:

这里的估值方法为:

时,有实洛朗级数:
,代 2 即可得到

高考估值的具体选取原则是:越精细越好,也就是用我们所能想到的最好的放缩式。( 所以各位如果要练习估计时,可能的话最好记下哪几条精度好,呆哥在书中估计时经常使用的可能比较实用 )

对于

,我们采取一种连分式迭代的方法:

容易证明

,将其两边 +1 后倒置 ,得到:
于是有:

则是利用泰勒级数
,代入 1 即可得到

所以

,是成立的, 这说明
根据上面
上递减 ,所以可以得到 :

也就是说

,证明完毕。这里的
点即限定了右侧的范围之后,在被代入后显化得到的函数
上的取值,这个便是我们需要的下界

点是
在实际极值点
处的取值 ,可以看到和
的最小值是相等的,这便是隐零点的思想所在。显化函数的图像呆哥在下面展示一下:

0cc59b7933ce897279687dc59c67e3aa.png

最后再来稍微加大一点难度:已知

,求
的最小值。

像这种题,其实是有点类似于放缩章节的不解析极值点替换的。呆哥把它放在这里,分隔开来,顺便起个名字,所谓 "不解析隐零点",来图个乐子。

首先看到

的形式,我们想下,能不能在对数
里面凑出这个东西来呢 ?

看到右边有个

,下面又除了个
, 可以发现这还是有机会的。首先我们两边同乘
试试 :

,这个时候把
拿过来 ,就能弄个
进对数里了,即等价于:

恒成立,那么现在我们就发现,如果换个元:

,那么就得到一个新式子:
恒成立。我们知道这个式子其实是一个切线放缩,而且方向是
,现在题目给了一个反号,那么说明它只能取等号了。

也就是说,只能是

这种情况了,然后再分离一下参数得到:

我们发现,

其实就是一个关于
的新函数
,容易求得:

所以

,也就是说
的最小值为

这个和隐零点其实没什么关系了,不过隐零点实际上就是类似于这种题目的替换思想。

隐零点最关键的部分就是把导函数的零点方程代回极值式,得到一个显化函数。在极值点处,显化函数值等于极值,然后通过极值点范围定出极值范围。一般来说,我们都是去细化范围,而不是去修改显化函数。除此之外,隐零点的一些题型,呆哥会在下面的实战训练中以题目的形式讲述。

上一篇文章:

高考数学呆哥:第一章:函数零点问题● 隐零点问题​zhuanlan.zhihu.com
e5819b60eb51444823aa037e4f29fe5b.png

整体体系链接:

高考数学呆哥:高考导数解题研究● 目录​zhuanlan.zhihu.com
a3eebf68814ffa8e52d476cbc5a819ff.png
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值