龙贝格求积分算法例题_数值计算方法 第六章 数值积分和数值微分

写在章前:积分与微分的计算,是具有广泛应用的古典问题。 然而,在微积分教材中,只对简单的或特殊的情况,提供了函数的积分或微分的解析表达式,在理论上可以使用Newton-Leibniz公式计算。但对很多实际问题,常常遇到的主要问题有:①找不到被积函数

的原函数

②被积函数的解析表达式结构十分复杂

③被积函数没有表达式,而是由测量数据或数值计算给出的数据表示。

对于上述这些情况,都要求建立定积分的近似计算方法。所谓关于 的数值积分公式,就是一类公式,它是用被积函数

区间上的一些节点
处的函数值
的线性组合。右端公式称为左端定积分的某个数值积分公式.其中
称为积分节点,
为求积系数, 也称之为伴随节点
的权。

本章讨论常用的数值求积公式及它们的误差估计和代数精度,而对数值微分只作简单介绍。

一、数值微分

对于函数的表达式复杂,或函数以表格形式给出,可以利用数值方法求其导数,这类问题称为数值微分。即给定函数表

,求出函数在节点
处的导数值。

1、差商型求导公式

由导数定义,

,容易想到当h充分小时,可用差商近似导数。由泰勒公式得到他们的余项公式。

①向前差商公式

余项:

②向后差商公式

余项:

③中心差商公式

余项:

由泰勒公式得到他们的余项公式:

可以看出,用差商近似导数,其精确度与步长

有关,
越小近似程度越高。中心差商公式的精确度最高。实际计算时,如果
取得过小,又会因有效数字损失而导致误差增大。

从几何上看,向前,向后,中心差商公式分别是以三点中的某两点间弦的斜率近似曲线中点斜率的。一般的,对称的中心差商与中点处的斜率更接近。在实际使用中,估计插值区间端点处导数值时多使用端点形式,其他时候更多使用中点形式。

2、插值型求导公式

已知函数在一些离散点上的值时,可用插值多项式近似函数,因此可望用插值多项式的导数作为函数导数的近似值。

设已知函数

个节点
,
,其插值多项式为
,用
  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值