python矩阵转置numpy_numpy.transpose()实现数组的转置例子

说到转置操作,顺便提及矩阵与数组的区别:

矩阵:数学里的概念,其元素只能是数值,这也是区别于数组的根本所在

数组:计算机中的概念,代表一种数据组织、存储方式,其元素可以是数字、也可以是字符

数组的转置操作,是借鉴了线性代数中矩阵的转置操作。将行与列对调,即第一行变成第一列…..或第一列变成第一行…..的操作即使转置操作。

1. 多维数组的转置

import numpy as np

test = np.array([[12,4,7,0],[3,7,45,81]])

test

# 以下为test输出的结果

array([[12, 4, 7, 0],

[ 3, 7, 45, 81]])

# 对test进行转置操作

test.transpose()

# 转置后得到的结果为

array([[12, 3],

[ 4, 7],

[ 7, 45],

[ 0, 81]])

2. 一维数组的转置

test = np.array([12,4,7,0])

test.shape

# test.shape的结果

(4,)

# 以下为test输出的结果

array([12, 4, 7, 0])

# 对test进行转置操作

result = test.transpose()

# 转置后得到的结果为

array([12, 4, 7, 0])

test.shape

# 一维数组(列向量)转置后的长度

(4,)

所以,对一维列向量进行转置,得到的还是一维列向量,并没有发生任何变化。经实践,这时候应借助shape属性来完成转置。详细见以下:

result.shape=(1,4)

result

# 这时输出result的值如下,对比与上面一个code框内的result值

array([[12, 4, 7, 0]])

这时候输出的result就是一个一行四列的一维数组了。

以上这篇numpy.transpose()实现数组的转置例子就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持python博客。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值