java基数排序 数组_X5-5、java数据结构---基数排序算法【2020-12-17 凌晨。。】

总目录:地址如下看总纲

1、基数排序介绍

1、基数排序(radix sort)属于“分配式排序”(distribution sort),又称“桶子法”(bucket sort)或bin sort,顾名思义,它是通过键值的各个位的值,将要排序的元素分配至某些“桶”中,达到排序的作用

2、基数排序法是属于稳定性的排序,基数排序法的是效率高的稳定性排序法

3、基数排序(Radix Sort)是桶排序的扩展

4、基数排序是1887年赫尔曼·何乐礼发明的。它是这样实现的:将整数按位数切割成不同的数字,然后按每个位数分别比较。

2、基本思想

将所有待比较数值统一为同样的数位长度,数位较短的数前面补零。然后,从最低位开始,依次进行一次排序。这样从最低位排序一直到最高位排序完成以后, 数列就变成一个有序序列

3、图解

cd0f81f97263

cd0f81f97263

cd0f81f97263

image.png

4、分段推导代码

// 基数排序 分论 Api

public static void radixSort1(int[] arr) {

// 定义一个二维数组表示 10 个桶(0-9),每个桶是一个一维数组

//须知:

// 1、二维数组中包含 10 个一维数组

// 2、为防止放入数值的时候数据溢出,则每个一维数组(桶) 的大小定义为 arr.length(要排序的数量)

// 3、故 基数排序为典型的空间换时间 算法

int[][] bucket = new int[10][arr.length];

// 为了记录每个桶中,实际存放数据的个数、我们定义了一个二维数组用来记录每个桶中每次存放数据的个数

// 第几个桶 bucketElementCounts[0] --- 第一个

int[] bucketElementCounts = new int[10];

// 一、基数排序 第一轮(针对每个数的个位数排序处理)

for (int i = 0; i < arr.length; i++) {

// 取出每个元素个位数的值

int digitOfElement= arr[i]/1%10;

// 放入到对应的桶中

bucket[digitOfElement][bucketElementCounts[digitOfElement]] = arr[i];

bucketElementCounts[digitOfElement]++;

}

// 按照这个桶的顺序(一维数组的下标依次取出数据,放入原来的数组)

int index = 0;

// 遍历每一个桶,并将桶中数组,放入到原来数组

for (int j = 0; j < bucketElementCounts.length; j++) {

// 若桶中有数据,则放入到原来数组

if(bucketElementCounts[j] !=0) {

// 循环该桶的第 J 和元素,既 第 j 个一维数组

for (int k = 0; k < bucketElementCounts[j]; k++) {

// 取出元素放入

arr[index++] = bucket[j][k];

}

}

// 第一轮处理后,需将每个桶 清空 bucketElementCounts[j] = 0

bucketElementCounts[j] = 0;

}

System.out.println("第1轮,对个位的排序处理 arr =" + Arrays.toString(arr));

// 二、基数排序 第二轮(针对每个数的十位数排序处理)

for (int i = 0; i < arr.length; i++) {

// 取出每个元素个位数的值

int digitOfElement= arr[i]/1/10%10;// 748 / 10 => 74 % 10 => 4

// 放入到对应的桶中

bucket[digitOfElement][bucketElementCounts[digitOfElement]] = arr[i];

bucketElementCounts[digitOfElement]++;

}

// 按照这个桶的顺序(一维数组的下标依次取出数据,放入原来的数组)

int index2 = 0;

// 遍历每一个桶,并将桶中数组,放入到原来数组

for (int j = 0; j < bucketElementCounts.length; j++) {

// 若桶中有数据,则放入到原来数组

if(bucketElementCounts[j] !=0) {

// 循环该桶的第 J 和元素,既 第 j 个一维数组

for (int k = 0; k < bucketElementCounts[j]; k++) {

// 取出元素放入

arr[index2++] = bucket[j][k];

}

}

// 第一轮处理后,需将每个桶 清空 bucketElementCounts[j] = 0

bucketElementCounts[j] = 0;

}

System.out.println("第2轮,对个位的排序处理 arr =" + Arrays.toString(arr));

// 三、基数排序 第三轮(针对每个数的百位数排序处理)

for (int i = 0; i < arr.length; i++) {

// 取出每个元素个位数的值

int digitOfElement= arr[i]/1/10/10%10;// 748 / 10 /10 => 7 % 10 => 7

// 放入到对应的桶中

bucket[digitOfElement][bucketElementCounts[digitOfElement]] = arr[i];

bucketElementCounts[digitOfElement]++;

}

// 按照这个桶的顺序(一维数组的下标依次取出数据,放入原来的数组)

int index3 = 0;

// 遍历每一个桶,并将桶中数组,放入到原来数组

for (int j = 0; j < bucketElementCounts.length; j++) {

// 若桶中有数据,则放入到原来数组

if(bucketElementCounts[j] !=0) {

// 循环该桶的第 J 和元素,既 第 j 个一维数组

for (int k = 0; k < bucketElementCounts[j]; k++) {

// 取出元素放入

arr[index3++] = bucket[j][k];

}

}

// 第一轮处理后,需将每个桶 清空 bucketElementCounts[j] = 0

bucketElementCounts[j] = 0;

}

System.out.println("第3轮,对个位的排序处理 arr =" + Arrays.toString(arr));

}

5、完整代码

/**

* title: 基数排序

* @author 阿K

* 2020年12月17日 上午12:02:16

*/

public class RadixSort {

public static void main(String[] args) {

// int arr[] = { 53, 3, 542, 748, 14, 214 };

// radixSort2(arr);

// System.out.println("基数排序后 " + Arrays.toString(arr));

// 80000000 * 11 * 4 / 1024 / 1024 / 1024 =3.3G

int[] arr = new int[80000000];

for (int i = 0; i < 80000000; i++) {

arr[i] = (int) (Math.random() * 80000000); // 生成一个[0, 8000000) 数

}

// new RadixSort(arr);

// new MergeSort(arr);

new QuickSort(arr);

}

public RadixSort(int arr[]) {

long time = new Date().getTime();

radixSort2(arr);

long time2 = new Date().getTime();

System.out.println("基数排序 排" + (arr.length) + "个数据,使用" + (time2 - time) + "毫秒");

}

// 基数排序 Api

public static void radixSort2(int[] arr) {

// 根据前面的推导过程,我们可以得到最终的基数排序代码

// 得到数组中最大的数,的位数

int max = arr[0];// 假定第一个为最大

for (int i = 0; i < arr.length; i++) {

if (arr[i] > max) {

max = arr[i];

}

}

// 得到最大数的位数

int maxLength = (max + "").length();

// 定义一个二维数组表示 10 个桶(0-9),每个桶是一个一维数组

// 须知:

// 1、二维数组中包含 10 个一维数组

// 2、为防止放入数值的时候数据溢出,则每个一维数组(桶) 的大小定义为 arr.length(要排序的数量)

// 3、故 基数排序为典型的空间换时间 算法

int[][] bucket = new int[10][arr.length];

// 为了记录每个桶中,实际存放数据的个数、我们定义了一个二维数组用来记录每个桶中每次存放数据的个数

// 第几个桶 bucketElementCounts[0] --- 第一个

int[] bucketElementCounts = new int[10];

// 这里使用循环(代替未知轮数)将代码处理

for (int i = 0, n = 1; i < maxLength; i++, n *= 10) {

// 针对每个元素对应的位数进行处理,第一次是个位,第二次是十位,第三次数百位.....

for (int j = 0; j < arr.length; j++) {

// 取出每个元素个位数的值

int digitOfElement = arr[j] / n % 10;

// 放入到对应的桶中

bucket[digitOfElement][bucketElementCounts[digitOfElement]] = arr[j];

bucketElementCounts[digitOfElement]++;

}

// 按照这个桶的顺序(一维数组的下标依次取出数据,放入原来的数组)

int index = 0;

// 遍历每一个桶,并将桶中数组,放入到原来数组

for (int k = 0; k < bucketElementCounts.length; k++) {

// 若桶中有数据,则放入到原来数组

if (bucketElementCounts[k] != 0) {

// 循环该桶的第 J 和元素,既 第 j 个一维数组

for (int l = 0; l < bucketElementCounts[k]; l++) {

// 取出元素放入

arr[index++] = bucket[k][l];

}

}

// 第 i+1 轮处理后,需将每个桶 清空 bucketElementCounts[k] = 0

bucketElementCounts[k] = 0;

}

}

}

// 基数排序 分轮 Api

public static void radixSort1(int[] arr) {

// 定义一个二维数组表示 10 个桶(0-9),每个桶是一个一维数组

// 须知:

// 1、二维数组中包含 10 个一维数组

// 2、为防止放入数值的时候数据溢出,则每个一维数组(桶) 的大小定义为 arr.length(要排序的数量)

// 3、故 基数排序为典型的空间换时间 算法

int[][] bucket = new int[10][arr.length];

// 为了记录每个桶中,实际存放数据的个数、我们定义了一个二维数组用来记录每个桶中每次存放数据的个数

// 第几个桶 bucketElementCounts[0] --- 第一个

int[] bucketElementCounts = new int[10];

// 一、基数排序 第一轮(针对每个数的个位数排序处理)

for (int i = 0; i < arr.length; i++) {

// 取出每个元素个位数的值

int digitOfElement = arr[i] / 1 % 10;

// 放入到对应的桶中

bucket[digitOfElement][bucketElementCounts[digitOfElement]] = arr[i];

bucketElementCounts[digitOfElement]++;

}

// 按照这个桶的顺序(一维数组的下标依次取出数据,放入原来的数组)

int index = 0;

// 遍历每一个桶,并将桶中数组,放入到原来数组

for (int j = 0; j < bucketElementCounts.length; j++) {

// 若桶中有数据,则放入到原来数组

if (bucketElementCounts[j] != 0) {

// 循环该桶的第 J 和元素,既 第 j 个一维数组

for (int k = 0; k < bucketElementCounts[j]; k++) {

// 取出元素放入

arr[index++] = bucket[j][k];

}

}

// 第一轮处理后,需将每个桶 清空 bucketElementCounts[j] = 0

bucketElementCounts[j] = 0;

}

System.out.println("第1轮,对个位的排序处理 arr =" + Arrays.toString(arr));

// 二、基数排序 第二轮(针对每个数的十位数排序处理)

for (int i = 0; i < arr.length; i++) {

// 取出每个元素个位数的值

int digitOfElement = arr[i] / 1 / 10 % 10;// 748 / 10 => 74 % 10 => 4

// 放入到对应的桶中

bucket[digitOfElement][bucketElementCounts[digitOfElement]] = arr[i];

bucketElementCounts[digitOfElement]++;

}

// 按照这个桶的顺序(一维数组的下标依次取出数据,放入原来的数组)

int index2 = 0;

// 遍历每一个桶,并将桶中数组,放入到原来数组

for (int j = 0; j < bucketElementCounts.length; j++) {

// 若桶中有数据,则放入到原来数组

if (bucketElementCounts[j] != 0) {

// 循环该桶的第 J 和元素,既 第 j 个一维数组

for (int k = 0; k < bucketElementCounts[j]; k++) {

// 取出元素放入

arr[index2++] = bucket[j][k];

}

}

// 第一轮处理后,需将每个桶 清空 bucketElementCounts[j] = 0

bucketElementCounts[j] = 0;

}

System.out.println("第2轮,对个位的排序处理 arr =" + Arrays.toString(arr));

// 三、基数排序 第三轮(针对每个数的百位数排序处理)

for (int i = 0; i < arr.length; i++) {

// 取出每个元素个位数的值

int digitOfElement = arr[i] / 1 / 10 / 10 % 10;// 748 / 10 /10 => 7 % 10 => 7

// 放入到对应的桶中

bucket[digitOfElement][bucketElementCounts[digitOfElement]] = arr[i];

bucketElementCounts[digitOfElement]++;

}

// 按照这个桶的顺序(一维数组的下标依次取出数据,放入原来的数组)

int index3 = 0;

// 遍历每一个桶,并将桶中数组,放入到原来数组

for (int j = 0; j < bucketElementCounts.length; j++) {

// 若桶中有数据,则放入到原来数组

if (bucketElementCounts[j] != 0) {

// 循环该桶的第 J 和元素,既 第 j 个一维数组

for (int k = 0; k < bucketElementCounts[j]; k++) {

// 取出元素放入

arr[index3++] = bucket[j][k];

}

}

// 第一轮处理后,需将每个桶 清空 bucketElementCounts[j] = 0

bucketElementCounts[j] = 0;

}

System.out.println("第3轮,对个位的排序处理 arr =" + Arrays.toString(arr));

}

}

5、性能比较8KW个数据(基数 vs 并归 vs 快排)

cd0f81f97263

image.png

cd0f81f97263

image.png

cd0f81f97263

image.png

6、说明

1、基数排序是对传统桶排序的扩展,速度很快.

2、基数排序是经典的空间换时间的方式,占用内存很大, 当对海量数据排序时,容易造成 OutOfMemoryError 。

3、基数排序时稳定的。[注:假定在待排序的记录序列中,存在多个具有相同的关键字的记录,

若经过排序,这些记录的相对次序保持不变,即在原序列中,r[i]=r[j],且r[i]在r[j]之前,

而在排序后的序列中,r[i]仍在r[j]之前,则称这种排序算法是稳定的;否则称为不稳定的]

cd0f81f97263

image.png

cd0f81f97263

image.png

7、扩展:支持负数的基数排序

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值