首先介绍一下Iris鸢尾花数据集,内容摘自百度百科:Iris数据集是常用的分类实验数据集,由Fisher, 1936收集整理。“Iris也称鸢尾花卉数据集,是一类多重变量分析的数据集。数据集包含150个数据集,分为3类,每类50个数据,每个数据包含4个属性。可通过花萼长度,花萼宽度,花瓣长度,花瓣宽度4个属性预测鸢尾花卉属于(Setosa,Versicolour,Virginica)三个种类中的哪一类”。
导入库
读取数据
数据字段介绍:sepal_length:花萼长度,单位cm
sepal_width:花萼宽度,单位cm
petal_length:花瓣长度,单位cm
petal_width:花瓣宽度,单位cm
种类:setosa(山鸢尾),versicolor(杂色鸢尾),virginica(弗吉尼亚鸢尾)
在做categorical visualization的时候,seaborn给出了基础的stripplot & swarmplot, boxplot & violinplot, barplot & pointplot,以及抽象化的factorplot.下面就用纸鸢花数据集做一下讲解。
StripplotStripplot的本质就是把数据集中具有quantitative属性的变量按照类别去做散点图(Scatterplot)。
我们将纸鸢花数据集中不同种类花的sepal length做stripplot可视化
plt.show()
上边左侧的图片便是在默认风格下用stripplot绘制的散点图。在很多情况

本文介绍了鸢尾花数据集,并使用seaborn库展示了如何进行数据可视化,包括Stripplot、Swarmplot、Boxplot、Violinplot、Barplot、Pointplot和Factorplot的使用,以及它们在描述鸢尾花不同属性分布上的应用。
最低0.47元/天 解锁文章
1万+

被折叠的 条评论
为什么被折叠?



