
弘毅: 除了π和e还有哪些超越数?
我:这是个好问题。这里面有很多公开未解决的问题。
1. 几个基本概念的定义
能表示成两个整数之商的实数叫有理数,不是有理数的实数叫无理数。
能表示成整系数多项式的根的实数叫代数数,这等价于能表示成有理系数多项式的根。
不是代数数的实数叫超越数。
比如是无理数,也是代数数。
当然,每个有理数都是代数数,于是超越数就一定是无理数。
有些证明实数无理性的方法,就是通过证明其为超越数。
2. 跟π和e有关的超越性
首先,这两个数都是无理数。
e是无理数的证明,只要高中知识就能理解,详见我的专栏文章:
温欣提市:无理数π与e和你的纠结系列2|如何证明 e 是无理数?zhuanlan.zhihu.com
π是无理数的证明,需要微积分的知识,基本上学过一点高等数学就能理解,详见我的专栏文章:
温欣提市:无理数π与e和你的纠结系列3|如何证明π是无理数?zhuanlan.zhihu.com
而他们的超越性可以在任意一本讲超越数论的书中找到,
比如文献1的第一章或者文献2的第二章。
证明方法也依然很像其无理性的证明方式,都是反证法加分析的。
3. 其它超越数
已经被证明的超越数有

但是像


稍微聊下e和π的和

令

假设

则g(x)就是一个有理系数多项式,而他们的根e和π是超越数。
这由超越数的定义得到矛盾,于是

即使如此,我们依然还是不能证明他们到底是不是无理数。
即这是公开问题,尽管我们的直觉让我们坚信他们两个都是超越数。
另外,我们已经知道,从个数的角度看,
代数数跟有理数的个数和正整数是一样的,都是可数个,而超越数跟无理数的个数都跟实数一样多。
因此超越数是无处不在的,用测度的语言来说就是:
在实数上几乎处处都是超越数。
而现实的情况是,有大量从直观上我们坚信它是超越数的实数,我们还无法证明其超越性。
参考文献:
- A. Baker, Transcendental Number Theory, Cambridge Univ. Press, Cambridge, 1975.
- A. Gelfond, Transcendental and Algebraic Numbers, Dover, New York, 1960.