π是无理数证明定积分_除了π和e还有哪些超越数?|无理数π与e和你的纠结系列4...

bc240272416da3aea7c0ccc4738b60e0.png

弘毅: 除了π和e还有哪些超越数?

我:这是个好问题。这里面有很多公开未解决的问题。


1. 几个基本概念的定义

能表示成两个整数之商的实数叫有理数,不是有理数的实数叫无理数

能表示成整系数多项式的根的实数叫代数数,这等价于能表示成有理系数多项式的根。

不是代数数的实数叫超越数。

比如
equation?tex=%5Csqrt%7B2%7D 是无理数,也是代数数。

当然,每个有理数都是代数数,于是超越数就一定是无理数。

有些证明实数无理性的方法,就是通过证明其为超越数。

2. 跟π和e有关的超越性

首先,这两个数都是无理数

e是无理数的证明,只要高中知识就能理解,详见我的专栏文章:

温欣提市:无理数π与e和你的纠结系列2|如何证明 e 是无理数?​zhuanlan.zhihu.com
f4de40e4f79056e4dd3ff889a1fff247.png

π是无理数的证明,需要微积分的知识,基本上学过一点高等数学就能理解,详见我的专栏文章:

温欣提市:无理数π与e和你的纠结系列3|如何证明π是无理数?​zhuanlan.zhihu.com
5cbe58379c1de229cb52d3fded41e673.png

而他们的超越性可以在任意一本讲超越数论的书中找到,

比如文献1的第一章或者文献2的第二章。

证明方法也依然很像其无理性的证明方式,都是反证法加分析的。

3. 其它超越数

已经被证明的超越数有

equation?tex=2%5E%7B%5Csqrt%7B2%7D%7D%2C+%5Cln+2%2C+e%5E%7B%5Cpi%7D%2C

但是像

equation?tex=2%5Ee%2C%5Cpi%5Ee%2C%5Cpi%5E%7B%5Csqrt%7B2%7D%7D%2Ce%2B%5Cpi%2Ce%5Cpi%2Ce%5Cln+2和欧拉常数
equation?tex=%5Cgamma%3D%5Clim_%7Bn%5Crightarrow%2B%5Cinfty%7D%28%5Csum_%7Bi%3D1%7D%5En%5Cfrac%7B1%7D%7Bi%7D-%5Cln+n%29 这些数的超越性都是
公开问题,而且尽管我们坚信这些都是超越数,实际上连他们是不是无理数都是公开问题。

稍微聊下e和π的和

equation?tex=e%2B%5Cpi .

equation?tex=g%28x%29%3D%28x-e%29%28x-%5Cpi%29%3Dx%5E2-%28e%2B%5Cpi%29x%2Be%5Cpi.

假设

equation?tex=e%2B%5Cpi%2Ce%5Cpi 两者都是有理数。

则g(x)就是一个有理系数多项式,而他们的根e和π是超越数。

这由超越数的定义得到矛盾,于是

equation?tex=e%2B%5Cpi%2Ce%5Cpi 两者中必有一个无理数。

即使如此,我们依然还是不能证明他们到底是不是无理数。

即这是公开问题,尽管我们的直觉让我们坚信他们两个都是超越数。

另外,我们已经知道,从个数的角度看,

代数数跟有理数的个数和正整数是一样的,都是可数个,而超越数跟无理数的个数都跟实数一样多。

因此超越数是无处不在的,用测度的语言来说就是:

在实数上几乎处处都是超越数。

而现实的情况是,有大量从直观上我们坚信它是超越数的实数,我们还无法证明其超越性。

参考文献:

  1. A. Baker, Transcendental Number Theory, Cambridge Univ. Press, Cambridge, 1975.
  2. A. Gelfond, Transcendental and Algebraic Numbers, Dover, New York, 1960.

多谢关注和点赞,支持原创高质量文章!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值