1.文字回答:按照自己的观点,总结对于语义分割的理解
语义分割是对一张图片的每一个像素点进行分类,并将每个类别(车,车道,人物,建筑,天空)用不同的颜色标注出来。它是计算机视觉中的关键任务之一,越来越多的应用场景需要从影响中推理出相关的知识和语义。语义分割可以帮助场景理解
2.文字回答:怎样理解论文中的Figure 2 ?
图2展示了如何把分类网络的backbone应用到语义分割任务中。把全连接层去了,转换成卷积层,让网络输出一个heatmap。这样做有两个好处,一是可以实现任意尺寸的输入,原vgg模型则要求固定尺寸的输入;二是输出为与输入同尺寸的图像,实现了端到端。
3.文字回答:用文字描述论文中的Figure 3
描述了网络特征图进行融合的过程。每次经过pool层进行一次下采样,尺寸减小一半,最后产生了1/32预测特征图(FCN-32s);1/32特征图上采用为1/16特征图,和原来的1/16特征图在通道上进行合并产生1/16预测特征图(FCN-16s);合并结果再二次上采样