ncf 推荐系统_【Rec论文阅读】在社交数据上的冷启动和长尾推荐

Title

On both Cold-Start and Long-Tail Recommendation with Social Data

写在前面

这篇论文提出了一种基于MF的协同过滤算法,来同时解决现实世界推荐系统面临的两个挑战:冷启动和长尾推荐。

  1. 冷启动是针对一个完全新的用户或商品做推荐;
  2. 长尾推荐的核心是给大多数交互信息少的用户或商品做推荐。

创新点

  1. 是一个能同时解决冷启动和长尾推荐的模型;
  2. 此外,提出了该模型的快速扩展,并且分析了误差边界和泛化边界;

方法

普通的矩阵分解形式如下:

(Y为评分矩阵,k为隐向量维度,U为用户隐向量矩阵,I为物品隐向量矩阵)

传统的MF模型,存在冷启动问题,毕竟有用户交互信息才能参与训练。

为了解决冷启动问题:

文中提到需要参考一些辅助信息,例如:

  1. 用户属性(性别、年龄、出生地等)
  2. 商品属性(图片的CNN特征等)
  3. 社交属性(用户朋友群体)

本文提出的MF模型正利用了用户维度的辅助信息:

这里的s为用户辅助信息的维度,比如信息包括(年龄、性别、出生地、社交关系),那么s就等于4;W相当于是一个从用户信息到物品评分的映射;

这是一个关于用户辅助信息的线性模型,因此不存在冷启动问题。

为了解决长尾推荐问题,文中提出一种思路:

将长尾问题中的短头(short head)和长尾(long tail)分开来讨论,这样做是因为SH部分的数据通常是低秩的,LT部分的数据是稀疏的。分开讨论,便于引入不同的正则项。

b1cade103d9c0bd31275daf3622f48fb.png

因此问题转换成了:

26e043996f61d2df7dd74683eedce038.png

SH部分使用了核范数为正则项,确保低秩;LT部分使用了L1范数,确保稀疏。

核范数部分可以写成XW奇异值的和:

175c471c2b642ca3e6f79172062d10d8.png

ff311504619162c370eb7a590c4b7bf0.png

最终得到下面的目标函数:

1401b456d1ddab763db0f67f12174526.png

这个函数是非凸的,文中提出一种交替优化的算法:

固定LT部分,优化SH;然后固定SH部分,优化LT,迭代直到收敛。

267a719d4792255e7d2124b0f97e0367.png

原模型的扩展

扩展部分涉及到大量公式推导,这里就不详细介绍了。

实验结果

09f110f764de6c17f10bf082e3a05e0b.png

d51b14ac929b810573958589a88485e7.png

可以看到,在几个公开数据集上的效果优于NCF以及一些传统方法。

结论

本文通过提出一种对用户辅助信息线性建模的算法,将用户冷启动问题和长尾推荐问题在一个模型上解决,并提出了一系列的优化方法和理论分析。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值