python二手车价格预测_Datawhale & 天池二手车交易价格预测— Task5 模型融合

Datawhale & 天池二手车交易价格预测— Task5 模型融合

1 模型融合目标

对于多种调参完成的模型进行模型融合。

2 内容介绍

模型融合是比赛后期一个重要的环节,大体来说有如下的类型方式。

简单加权融合:

回归(分类概率):算术平均融合(Arithmetic mean),几何平均融合(Geometric mean);分类:投票(Voting);综合:排序融合(Rank averaging),log融合。

stacking/blending:

构建多层模型,并利用预测结果再拟合预测。

boosting/bagging(在xgboost,Adaboost,GBDT中已经用到):

多树的提升方法

3 Stacking相关理论介绍

3.1 什么是 stacking

简单来说 stacking 就是当用初始训练数据学习出若干个基学习器后,将这几个学习器的预测结果作为新的训练集,来学习一个新的学习器。

将个体学习器结合在一起的时候使用的方法叫做结合策略。对于分类问题,我们可以使用投票法来选择输出最多的类。对于回归问题,我们可以将分类器输出的结果求平均值。

上述投票法和平均法都是很有效的结合策略,还有一种结合策略是使用另外一个机器学习算法来将个体机器学习器的结果结合在一起,这个方法就是Stacking。

在stacking方法中,我们把个体学习器叫做初级学习器,用于结合的学习器叫做次级学习器或元学习器(metalearner),次级学习器用于训练的数据叫做次级训练集。次级训练集是在训练集上用初级学习器得到的。

3.2 如何进行 stacking

算法示意图如下:

过程1-3 是训练出来个体学习器,也就是初级学习器。

过程5-9是 使用训练出来的个体学习器来得预测的结果,这个预测的结果当做次级学习器的训练集。

过程11 是用初级学习器预测的结果训练出次级学习器,得到我们最后训练的模型。 ——源自西瓜书

3.3 Stacking的方法讲解

首先,我们先从一种“不那么正确”但是容易懂的Stacking方法讲起。Stacking模型本质上是一种分层的结构,这里简单起见,只分析二级Stacking.假设我们有2个基模型 Model1_1、Model1_2 和 一个次级模型Model2。

以上是我们两层堆叠的一种基本的原始思路想法。在不同模型预测的结果基础上再加一层模型,进行再训练,从而得到模型最终的预测。

Stacking有时对于如果训练集和测试集分布不那么一致的情况下是有一点问题的,其问题在于用初始模型训练的标签再利用真实标签进行再训练,毫无疑问会导致一定的模型过拟合训练集,这样或许模型在测试集上的泛化能力或者说效果会有一定的下降,因此现在的问题变成了如何降低再训练的过拟合性,这里我们一般有两种方法,分别是次级模型尽量选择简单的线性模型和利用K折交叉验证。

3.4 代码参考

1 回归\分类概率-融合:

1)简单加权平均,结果直接融合

## 生成一些简单的样本数据,test_prei 代表第i个模型的预测值

test_pre1 = [1.2, 3.2, 2.1, 6.2]

test_pre2 = [0.9, 3.1, 2.0, 5.9]

test_pre3 = [1.1, 2.9, 2.2, 6.0]

# y_test_true 代表第模型的真实值

y_test_true = [1, 3, 2, 6]

import numpy as np

import pandas as pd

## 定义结果的加权平均函数

def Weighted_method(test_pre1,test_pre2,test_pre3,w=[1/3,1/3,1/3]):

Weighted_result = w[0]*pd.Series(test_pre1)+w[1]*pd.Series(test_pre2)+w[2]*pd.Series(test_pre3)

return Weighted_

from sklearn import metrics

# 各模型的预测结果计算MAE

print('Pred1 MAE:',metrics.mean_absolute_error(y_test_true, test_pre1))

print('Pred2 MAE:',metrics.mean_absolute_error(y_test_true, test_pre2))

print('Pred3 MAE:',metrics.mean_absolute_error(y_test_true, test_pre3))

Pred1 MAE: 0.175

Pred2 MAE: 0.075

Pred3 MAE: 0.1

## 根据加权计算MAE

w = [0.3,0.4,0.3] # 定义比重权值

Weighted_pre = Weighted_method(test_pre1,test_pre2,test_pre3,w)

print('Weighted_pre MAE:',metrics.mean_absolute_error(y_test_true, Weighted_pre))

Weighted_pre MAE: 0.0575

由上可得,加权结果相对于之前的结果是有提升的,这种我们称其为简单的加权平均。另外还有mean平均,median平均。

## 定义结果的加权平均函数

def Mean_method(test_pre1,test_pre2,test_pre3):

Mean_result = pd.concat([pd.Series(test_pre1),pd.Series(test_pre2),pd.Series(test_pre3)],axis=1)

return Mean_result

Mean_pre = Mean_method(test_pre1,test_pre2,test_pre3)

print('Mean_pre MAE:',metrics.mean_absolute_error(y_test_true, Mean_pre))

Mean_pre MAE: 0.0666666666667

## 定义结果的加权平均函数

def Median_method(test_pre1,test_pre2,test_pre3):

Median_result = pd.concat([pd.Series(test_pre1),pd.Series(test_pre2),pd.Series(test_pre3)],axis=

return Median_result

Median_pre = Median_method(test_pre1,test_pre2,test_pre3)

print('Median_pre MAE:',metrics.mean_absolute_error(y_test_true, Median_pre))

Median_pre MAE: 0.075

2) Stacking融合(回归):

from sklearn import linear_model

def Stacking_method(train_reg1,train_reg2,train_reg3,y_train_true,test_pre1,test_pre2,test_pre3,mode

model_L2.fit(pd.concat([pd.Series(train_reg1),pd.Series(train_reg2),pd.Series(train_reg3)],axis=

Stacking_result = model_L2.predict(pd.concat([pd.Series(test_pre1),pd.Series(test_pre2),pd.Serie

return Stacking_result

## 生成一些简单的样本数据,test_prei 代表第i个模型的预测值

train_reg1 = [3.2, 8.2, 9.1, 5.2]

train_reg2 = [2.9, 8.1, 9.0, 4.9]

train_reg3 = [3.1, 7.9, 9.2, 5.0]

# y_test_true 代表第模型的真实值

y_train_true = [3, 8, 9, 5]

test_pre1 = [1.2, 3.2, 2.1, 6.2]

test_pre2 = [0.9, 3.1, 2.0, 5.9]

test_pre3 = [1.1, 2.9, 2.2, 6.0]

# y_test_true 代表第模型的真实值

y_test_true = [1, 3, 2, 6]

model_L2= linear_model.LinearRegression()

Stacking_pre = Stacking_method(train_reg1,train_reg2,train_reg3,y_train_true,

test_pre1,test_pre2,test_pre3,model_L2)

print('Stacking_pre MAE:',metrics.mean_absolute_error(y_test_true, Stacking_pre))

Stacking_pre MAE: 0.0421348314607

可以发现模型结果相对于之前有进一步的提升,这是我们需要注意的一点是,对于第二层Stacking的模型不宜选取的过于复杂,这样会导致模型在训练集上过拟合,从而使得在测试集上并不能达到很好的效果。

2 分类模型融合:

对于分类,同样的可以使用融合方法,比如简单投票,Stacking…。

from sklearn.datasets import make_blobs

from sklearn import datasets

from sklearn.tree import DecisionTreeClassifier

import numpy as np

from sklearn.ensemble import RandomForestClassifier

from sklearn.ensemble import VotingClassifier

from xgboost import XGBClassifier

from sklearn.linear_model import LogisticRegression

from sklearn.svm import SVC

from sklearn.model_selection import train_test_split

from sklearn.datasets import make_moons

from sklearn.metrics import accuracy_score,roc_auc_score

from sklearn.model_selection import cross_val_score

from sklearn.model_selection import StratifiedKFold

1)Voting投票机制:

Voting即投票机制,分为软投票和硬投票两种,其原理采用少数服从多数的思想。

'''

硬投票:对多个模型直接进行投票,不区分模型结果的相对重要度,最终投票数最多的类为最终被预测的类。

'''

iris = datasets.load_iris()

x=iris.data

y=iris.target

x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)

clf1 = XGBClassifier(learning_rate=0.1, n_estimators=150, max_depth=3, min_child_weight=2, subsampl

colsample_bytree=0.6, objective='binary:logistic')

clf2 = RandomForestClassifier(n_estimators=50, max_depth=1, min_samples_split=4,

min_samples_leaf=63,oob_score=True)

clf3 = SVC(C=0.1)

# 硬投票

eclf = VotingClassifier(estimators=[('xgb', clf1), ('rf', clf2), ('svc', clf3)], voting='hard')

for clf, label in zip([clf1, clf2, clf3, eclf], ['XGBBoosting', 'Random Forest', 'SVM', 'Ensemble']

scores = cross_val_score(clf, x, y, cv=5, scoring='accuracy')

print("Accuracy: %0.2f (+/- %0.2f) [%s]" % (scores.mean(), scores.std(), label))

Accuracy: 0.97 (+/- 0.02) [XGBBoosting]

Accuracy: 0.33 (+/- 0.00) [Random Forest]

Accuracy: 0.95 (+/- 0.03) [SVM]

Accuracy: 0.94 (+/- 0.04) [Ensemble]

'''

软投票:和硬投票原理相同,增加了设置权重的功能,可以为不同模型设置不同权重,进而区别模型不同的重要度

'''

x=iris.data

y=iris.target

x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)

clf1 = XGBClassifier(learning_rate=0.1, n_estimators=150, max_depth=3, min_child_weight=2, subsampl

colsample_bytree=0.8, objective='binary:logistic')

clf2 = RandomForestClassifier(n_estimators=50, max_depth=1, min_samples_split=4,

min_samples_leaf=63,oob_score=True)

clf3 = SVC(C=0.1, probability=True)

# 软投票

eclf = VotingClassifier(estimators=[('xgb', clf1), ('rf', clf2), ('svc', clf3)], voting='soft', weig

clf1.fit(x_train, y_train)

for clf, label in zip([clf1, clf2, clf3, eclf], ['XGBBoosting', 'Random Forest', 'SVM', 'Ensemble']

scores = cross_val_score(clf, x, y, cv=5, scoring='accuracy')

print("Accuracy: %0.2f (+/- %0.2f) [%s]" % (scores.mean(), scores.std(), label))

Accuracy: 0.96 (+/- 0.02) [XGBBoosting]

Accuracy: 0.33 (+/- 0.00) [Random Forest]

Accuracy: 0.95 (+/- 0.03) [SVM]

Accuracy: 0.96 (+/- 0.02) [Ensemble]

2)分类的Stacking\Blending融合:

stacking是一种分层模型集成框架,以两层为例,第一层由多个基学习器组成,其输入为原始训练集,第二层的模型则是以第一层基学习器的输出作为训练集进行再训练,从而得到完整的stacking模型, stacking两层模型都使用了全部的训练数据。

'''

5-Fold Stacking

'''

from sklearn.ensemble import RandomForestClassifier

from sklearn.ensemble import ExtraTreesClassifier,GradientBoostingClassifier

import pandas as pd

#创建训练的数据集

data_0 = iris.data

data = data_0[:100,:]

target_0 = iris.target

target = target_0[:100]

#模型融合中使用到的各个单模型

clfs = [LogisticRegression(solver='lbfgs'),

RandomForestClassifier(n_estimators=5, n_jobs=-1, criterion='gini'),

ExtraTreesClassifier(n_estimators=5, n_jobs=-1, criterion='gini'),

ExtraTreesClassifier(n_estimators=5, n_jobs=-1, criterion='entropy'),

GradientBoostingClassifier(learning_rate=0.05, subsample=0.5, max_depth=6, n_estimators=5)]

#切分一部分数据作为测试集

X, X_predict, y, y_predict = train_test_split(data, target, test_size=0.3, random_state=2020)

dataset_blend_train = np.zeros((X.shape[0], len(clfs)))

dataset_blend_test = np.zeros((X_predict.shape[0], len(clfs)))

#5折stacking

n_splits = 5

skf = StratifiedKFold(n_splits)

skf = skf.split(X, y)

for j, clf in enumerate(clfs):

#依次训练各个单模型

dataset_blend_test_j = np.zeros((X_predict.shape[0], 5))

for i, (train, test) in enumerate(skf):

#5-Fold交叉训练,使用第i个部分作为预测,剩余的部分来训练模型,获得其预测的输出作为第i部分的新

X_train, y_train, X_test, y_test = X[train], y[train], X[test], y[test]

clf.fit(X_train, y_train)

y_submission = clf.predict_proba(X_test)[:, 1]

dataset_blend_train[test, j] = y_submission

dataset_blend_test_j[:, i] = clf.predict_proba(X_predict)[:, 1]

#对于测试集,直接用这k个模型的预测值均值作为新的特征。

dataset_blend_test[:, j] = dataset_blend_test_j.mean(1)

print("val auc Score: %f" % roc_auc_score(y_predict, dataset_blend_test[:, j]))

clf = LogisticRegression(solver='lbfgs')

clf.fit(dataset_blend_train, y)

y_submission = clf.predict_proba(dataset_blend_test)[:, 1]

print("Val auc Score of Stacking: %f" % (roc_auc_score(y_predict, y_submission)))

val auc Score: 1.000000

val auc Score: 0.500000

val auc Score: 0.500000

val auc Score: 0.500000

val auc Score: 0.500000

Val auc Score of Stacking: 1.000000

Blending,其实和Stacking是一种类似的多层模型融合的形式。其主要思路是把原始的训练集先分成两部分,比如70%的数据作为新的训练集,剩下30%的数据作为测试集。在第一层,我们在这70%的数据上训练多个模型,然后去预测那30%数据的label,同时也预测test集的label。在第二层,我们就直接用这30%数据在第一层预测的结果做为新特征继续训练,然后用test集第一层预测的label做特征,用第二层训练的模型做进一步预测。

优点在于:

1.比stacking简单(因为不用进行k次的交叉验证来获得stacker feature)。

2.避开了一个信息泄露问题:generlizers和stacker使用了不一样的数据集。

缺点在于:

1.使用了很少的数据(第二阶段的blender只使用training set10%的量)。

2.blender可能会过拟合。

3.stacking使用多次的交叉验证会比较稳健 。

'''

Blending

'''

#创建训练的数据集

#创建训练的数据集

data_0 = iris.data

data = data_0[:100,:]

target_0 = iris.target

target = target_0[:100]

#模型融合中使用到的各个单模型

clfs = [LogisticRegression(solver='lbfgs'),

RandomForestClassifier(n_estimators=5, n_jobs=-1, criterion='gini'),

RandomForestClassifier(n_estimators=5, n_jobs=-1, criterion='entropy'),

ExtraTreesClassifier(n_estimators=5, n_jobs=-1, criterion='gini'),

#ExtraTreesClassifier(n_estimators=5, n_jobs=-1, criterion='entropy'),

GradientBoostingClassifier(learning_rate=0.05, subsample=0.5, max_depth=6, n_estimators=5)]

#切分一部分数据作为测试集

X, X_predict, y, y_predict = train_test_split(data, target, test_size=0.3, random_state=2020)

#切分训练数据集为d1,d2两部分

X_d1, X_d2, y_d1, y_d2 = train_test_split(X, y, test_size=0.5, random_state=2020)

dataset_d1 = np.zeros((X_d2.shape[0], len(clfs)))

dataset_d2 = np.zeros((X_predict.shape[0], len(clfs)))

for j, clf in enumerate(clfs):

#依次训练各个单模型

clf.fit(X_d1, y_d1)

y_submission = clf.predict_proba(X_d2)[:, 1]

dataset_d1[:, j] = y_submission

#对于测试集,直接用这k个模型的预测值作为新的特征。

dataset_d2[:, j] = clf.predict_proba(X_predict)[:, 1]

print("val auc Score: %f" % roc_auc_score(y_predict, dataset_d2[:, j]))

#融合使用的模型

clf = GradientBoostingClassifier(learning_rate=0.02, subsample=0.5, max_depth=6, n_estimators=30)

clf.fit(dataset_d1, y_d2)

y_submission = clf.predict_proba(dataset_d2)[:, 1]

print("Val auc Score of Blending: %f" % (roc_auc_score(y_predict, y_submission)))

val auc Score: 1.000000

val auc Score: 1.000000

val auc Score: 1.000000

val auc Score: 1.000000

val auc Score: 1.000000

Val auc Score of Blending: 1.000000

3)分类的Stacking融合(利用mlxtend):

!pip install mlxtend

import warnings

warnings.filterwarnings('ignore')

import itertools

import numpy as np

import seaborn as sns

import matplotlib.pyplot as plt

import matplotlib.gridspec as gridspec

from sklearn import datasets

from sklearn.linear_model import LogisticRegression

from sklearn.neighbors import KNeighborsClassifier

from sklearn.naive_bayes import GaussianNB

from sklearn.ensemble import RandomForestClassifier

from mlxtend.classifier import StackingClassifier

from sklearn.model_selection import cross_val_score

from mlxtend.plotting import plot_learning_curves

from mlxtend.plotting import plot_decision_regions

# 以python自带的鸢尾花数据集为例

iris = datasets.load_iris()

X, y = iris.data[:, 1:3], iris.target

clf1 = KNeighborsClassifier(n_neighbors=1)

clf2 = RandomForestClassifier(random_state=1)

clf3 = GaussianNB()

lr = LogisticRegression()

sclf = StackingClassifier(classifiers=[clf1, clf2, clf3],

meta_classifier=lr)

label = ['KNN', 'Random Forest', 'Naive Bayes', 'Stacking Classifier']

clf_list = [clf1, clf2, clf3, sclf]

fig = plt.figure(figsize=(10,8))

gs = gridspec.GridSpec(2, 2)

grid = itertools.product([0,1],repeat=2)

clf_cv_mean = []

clf_cv_std = []

for clf, label, grd in zip(clf_list, label, grid):

scores = cross_val_score(clf, X, y, cv=3, scoring='accuracy')

print("Accuracy: %.2f (+/- %.2f) [%s]" %(scores.mean(), scores.std(), label))

clf_cv_mean.append(scores.mean())

clf_cv_std.append(scores.std())

clf.fit(X, y)

ax = plt.subplot(gs[grd[0], grd[1]])

fig = plot_decision_regions(X=X, y=y, clf=clf)

plt.title(label)

plt.show()

可以发现 基模型 用 ‘KNN’, ‘Random Forest’, ‘Naive Bayes’ 然后再这基础上 次级模型加一个’LogisticRegression’,模型测试效果有着很好的提升。

3 一些其它方法:

将特征放进模型中预测,并将预测结果变换并作为新的特征加入原有特征中再经过模型预测结果 (Stacking变化——可以反复预测多次将结果加入最后的特征中)。

def Ensemble_add_feature(train,test,target,clfs):

# n_flods = 5

# skf = list(StratifiedKFold(y, n_folds=n_flods))

train_ = np.zeros((train.shape[0],len(clfs*2)))

test_ = np.zeros((test.shape[0],len(clfs*2)))

for j,clf in enumerate(clfs):

'''依次训练各个单模型'''

# print(j, clf)

'''使用第1个部分作为预测,第2部分来训练模型,获得其预测的输出作为第2部分的新特征。'''

# X_train, y_train, X_test, y_test = X[train], y[train], X[test], y[test]

clf.fit(train,target)

y_train = clf.predict(train)

y_test = clf.predict(test)

## 新特征生成

train_[:,j*2] = y_train**2

test_[:,j*2] = y_test**2

train_[:, j+1] = np.exp(y_train)

test_[:, j+1] = np.exp(y_test)

# print("val auc Score: %f" % r2_score(y_predict, dataset_d2[:, j]))

print('Method ',j)

train_ = pd.DataFrame(train_)

test_ = pd.DataFrame(test_)

return train_,test_

from sklearn.model_selection import cross_val_score, train_test_split

from sklearn.linear_model import LogisticRegression

clf = LogisticRegression()

data_0 = iris.data

data = data_0[:100,:]

target_0 = iris.target

target = target_0[:100]

x_train,x_test,y_train,y_test=train_test_split(data,target,test_size=0.3)

x_train = pd.DataFrame(x_train) ; x_test = pd.DataFrame(x_test)

#模型融合中使用到的各个单模型

clfs = [LogisticRegression(),

RandomForestClassifier(n_estimators=5, n_jobs=-1, criterion='gini'),

ExtraTreesClassifier(n_estimators=5, n_jobs=-1, criterion='gini'),

ExtraTreesClassifier(n_estimators=5, n_jobs=-1, criterion='entropy'),

GradientBoostingClassifier(learning_rate=0.05, subsample=0.5, max_depth=6, n_estimators=5)]

New_train,New_test = Ensemble_add_feature(x_train,x_test,y_train,clfs)

clf = LogisticRegression()

# clf = GradientBoostingClassifier(learning_rate=0.02, subsample=0.5, max_depth=6, n_estimators=30)

clf.fit(New_train, y_train)

y_emb = clf.predict_proba(New_test)[:, 1]

print("Val auc Score of stacking: %f" % (roc_auc_score(y_test, y_emb)))

Method 0

Method 1

Method 2

Method 3

Method 4

Val auc Score of stacking: 1.000000

以上内容基础来自

— By: 小雨姑娘

数据挖掘爱好者,多次获比赛TOP名次。

作者的机器学习笔记:https://zhuanlan.zhihu.com/mlbasic

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值