matlab 布朗运动_跳扩散过程模拟:几何布朗运动+复合泊松

本文介绍了如何使用Matlab模拟几何布朗运动和复合泊松过程,探讨了股价波动中的扩散和跳跃现象。通过独立模拟两部分然后合并,展示了模拟过程,并对参数进行了校准。虽然跳跃在金融市场上较为罕见,但其对股价的影响不容忽视。
摘要由CSDN通过智能技术生成

几何布朗运动(GBM)因为position不会为负数,经常被用于模拟扩散冲击下的股价行为。然而,股价因为消息面和交易者情绪的影响,可能在瞬时间发生较大幅度的波动,称为跳跃,建模时经常以复合泊松过程模拟。

笔者经常模拟扩散过程(比如dotNet平台模拟布朗运动的GUI),回避跳跃,主要因为手懒、不想写这个冲击因子。实际并不难,假定跳跃和扩散因子相互独立,模拟这样的过程可以分别做,然后再合并即可。

这里我想说,“人生苦短,我用MMA!”(这是py人的宣传口号,我一直反对,因为py要比matlab和R难多了,但在cs领域的开发语言里,py确实已足够简洁了)。使用Mathematica做这个事情不要太简单,能盖过任何其它语言,皆因其强大的内建函数。


  • 以下模拟所采用的参数值,校准于我对A股的一些描述性统计,读者可自行更改参数值把玩。以1664作为初始值。

  • 注意:只是过程的模拟,任意画出一条路径,并非根据实际数据对过程的推断和预测,莫用于投资。

一、复合泊松过程的模拟

跳跃的达到服从泊松过程,跳跃幅度服从正态过程

q1 = RandomFunction[       CompoundPoissonProcess[0.254
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值