两向量叉乘的计算公式_矢量叉乘

本文介绍了三维空间中两向量叉乘的概念,包括叉乘的几何定义、模长计算、方向确定(右手定则)、不满足交换律的性质、分配律以及坐标运算。还通过实例展示了如何计算三角形的面积和法向量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

(建议阅读原文)

预备知识 三阶行列式
   矢量叉乘在物理定律中十分常见, 例如在讨论力学中的力矩, 角动量, 以及电磁学中的洛伦兹力, 安培力时都会使用. 以下我们讨论的矢量都是三维空间中的几何矢量, 在讨论它们的坐标时, 我们默认取正交归一基底.

叉乘的几何定义
   两个几何矢量

叉乘(cross product) 也叫 叉积(cross product)向量积(vector product)矢量积. 叉乘的结果是一个矢量
. 叉乘用 “
” 表示,且不可省略, 即
定义1 矢量叉乘
要确定一个几何矢量,只需分别确定模长和方向:
  1. 的模长等于
    的模长之积与夹角
    )的正弦值相乘.
  2. 的方向垂直于
    所在的平面,且由右手定则决定.


   与内积和数乘不同ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值