向量的叉乘与行列式

为了循序渐进,先从二维开始讲起,然后过渡到三维

1. 二维空间

我们从一个五边形的面积开始说起

图片描述: 2023-11-28-20-47-h24y1b.png

比如我们要求这个正五边形的面积,该怎样用向量求呢?

先简化这个问题,不用考虑五边形,只需考虑三角形。

图片描述: 2023-11-28-20-47-ZeLv52.png

现在,我们把正五边形分割成三个三角形,再把三角形的面积加起来,就得到了五边形的面积。

那么问题来了:怎样求三角形的面积?

图片描述: 2023-11-28-20-47-wMrggN.png

设三角形的面积为S,那么

𝑆=12∣𝐴⃗∣∣𝑀𝑁⃗∣=12∣𝐴⃗∣∣𝐵⃗∣sin⁡(𝜃)(1)S=21​​A​​MN​=21​​A​​B​sin(θ)(1)

sin⁡(𝜃)sin(θ) 该如何求呢?

如果你学过向量的点积,应该知道𝑎⃗⋅𝑏⃗=∣𝑎⃗∣∣𝑏⃗∣cos⁡(𝜃)a⋅b=∣a∣​b​cos(θ).
所以为了求sin⁡(𝜃)sin(θ),我们可以先求出cos⁡(𝜃)cos(θ)

cos⁡(𝜃)=𝑎⃗⋅𝑏⃗∣𝑎⃗∣∣𝑏⃗∣(2)cos(θ)=∣a∣​b​a⋅b​(2)

再利用公式

cos⁡2(𝜃)+sin⁡2(𝜃)=1(3)cos2(θ)+sin2(θ)=1(3)

便可以求出 sin⁡(𝜃)sin(θ) 的值。

通过以上步骤,可以看出这样做很麻烦,有没有更简单的办法呢?当然有

求 sin⁡(𝜃)sin(θ) 太麻烦了,但是求 cos⁡(𝜃)cos(θ) 却很简单,为了避免求 sin⁡(𝜃)sin(θ),我们能否找到一个角,使这个角的余弦等于 sin⁡(𝜃)sin(θ) ?

作向量𝐴⃗A、𝐵⃗B,夹角记为𝜃θ,将向量𝐴⃗A逆时针旋转 90∘90∘ 得到 𝐴′⃗A′,如下图所示:

图片描述: 2023-11-28-20-48-aXMj2x.png

通过上图给的条件,我们已知:

{𝛽=𝜋2−𝜃cos⁡(𝛽)=sin⁡(𝜃){β=2π​−θcos(β)=sin(θ)​

这意味着𝐴⃗A的模长乘以𝐵⃗B的模长,再乘以sin⁡(𝜃)sin(θ),等于𝐴′⃗A′的模长乘以𝐵⃗B的模长,再乘以cos⁡(𝛽)cos(β),得到:

∣𝐴⃗∣∣𝐵⃗∣sin⁡(𝜃)=∣𝐴′⃗∣∣𝐵⃗∣cos⁡(𝛽)=𝐴′⃗⋅𝐵⃗==​​A​​B​sin(θ)​A′​​B​cos(β)A′⋅B​

即:

∣𝐴⃗∣∣𝐵⃗∣sin⁡(𝜃)=𝐴′⃗⋅𝐵⃗(4)​A​​B​sin(θ)=A′⋅B(4)

这个方法看起来不错,不过还有一点是不知道的,就是怎么求𝐴′⃗A′呢?

图片描述: 2023-11-28-20-48-4QRf8h.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值