为了循序渐进,先从二维开始讲起,然后过渡到三维
1. 二维空间
我们从一个五边形的面积开始说起
比如我们要求这个正五边形的面积,该怎样用向量求呢?
先简化这个问题,不用考虑五边形,只需考虑三角形。
现在,我们把正五边形分割成三个三角形,再把三角形的面积加起来,就得到了五边形的面积。
那么问题来了:怎样求三角形的面积?
设三角形的面积为S,那么
𝑆=12∣𝐴⃗∣∣𝑀𝑁⃗∣=12∣𝐴⃗∣∣𝐵⃗∣sin(𝜃)(1)S=21AMN=21ABsin(θ)(1)
sin(𝜃)sin(θ) 该如何求呢?
如果你学过向量的点积,应该知道𝑎⃗⋅𝑏⃗=∣𝑎⃗∣∣𝑏⃗∣cos(𝜃)a⋅b=∣a∣bcos(θ).
所以为了求sin(𝜃)sin(θ),我们可以先求出cos(𝜃)cos(θ)
cos(𝜃)=𝑎⃗⋅𝑏⃗∣𝑎⃗∣∣𝑏⃗∣(2)cos(θ)=∣a∣ba⋅b(2)
再利用公式
cos2(𝜃)+sin2(𝜃)=1(3)cos2(θ)+sin2(θ)=1(3)
便可以求出 sin(𝜃)sin(θ) 的值。
通过以上步骤,可以看出这样做很麻烦,有没有更简单的办法呢?当然有
求 sin(𝜃)sin(θ) 太麻烦了,但是求 cos(𝜃)cos(θ) 却很简单,为了避免求 sin(𝜃)sin(θ),我们能否找到一个角,使这个角的余弦等于 sin(𝜃)sin(θ) ?
作向量𝐴⃗A、𝐵⃗B,夹角记为𝜃θ,将向量𝐴⃗A逆时针旋转 90∘90∘ 得到 𝐴′⃗A′,如下图所示:
通过上图给的条件,我们已知:
{𝛽=𝜋2−𝜃cos(𝛽)=sin(𝜃){β=2π−θcos(β)=sin(θ)
这意味着𝐴⃗A的模长乘以𝐵⃗B的模长,再乘以sin(𝜃)sin(θ),等于𝐴′⃗A′的模长乘以𝐵⃗B的模长,再乘以cos(𝛽)cos(β),得到:
∣𝐴⃗∣∣𝐵⃗∣sin(𝜃)=∣𝐴′⃗∣∣𝐵⃗∣cos(𝛽)=𝐴′⃗⋅𝐵⃗==ABsin(θ)A′Bcos(β)A′⋅B
即:
∣𝐴⃗∣∣𝐵⃗∣sin(𝜃)=𝐴′⃗⋅𝐵⃗(4)ABsin(θ)=A′⋅B(4)
这个方法看起来不错,不过还有一点是不知道的,就是怎么求𝐴′⃗A′呢?