tensorflow 中对 tf.estimator 分配 GPU 方法

注:本文适用于Linux环境的操作。

 

1. 指定使用哪一块 GPU: 

先查找有多少块 GPU,并且获得设备编号: 

$ nvidia-smi

在代码执行指定使用哪块GPU:

CUDA_VISIBLE_DEVICES=0 ./myapp

 

指定使用第0块或者第0,1块GPU:

import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
os.environ['CUDA_VISIBLE_DEVICES'] = '0,1'

 

2 在tf.estimator() 控制GPU资源使用率:

    session_config = tf.ConfigProto(log_device_placement=True)
    session_config.gpu_options.per_process_gpu_memory_fraction = 0.5
    run_config = tf.estimator.RunConfig().replace(session_config=session_config)

    # Instantiate Estimator
    nn = tf.estimator.Estimator(model_fn=model_fn, config=run_config, params=model_params)

 

3 tf.Config() 还可以这样用:

356   session_config = tf.ConfigProto(
          log_device_placement=True
357       inter_op_parallelism_threads=0,
358       intra_op_parallelism_threads=0,
359       allow_soft_placement=True)
360 
361   #lingfeng
362   session_config.gpu_options.allow_growth = True
363   session_config.gpu_options.allocator_type = 'BFC'

具体解释


log_device_placement=True

  • 设置为True时,会打印出TensorFlow使用了那种操作

 

inter_op_parallelism_threads=0

  • 设置线程一个操作内部并行运算的线程数,比如矩阵乘法,如果设置为0,则表示以最优的线程数处理

 

intra_op_parallelism_threads=0

  • 设置多个操作并行运算的线程数,比如 c = a + b,d = e + f . 可以并行运算

 

allow_soft_placement=True

  • 有时候,不同的设备,它的cpu和gpu是不同的,如果将这个选项设置成True,那么当运行设备不满足要求时,会自动分配GPU或者CPU。

 

参考代码:

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import argparse
import sys
import tempfile

# Import urllib
from six.moves import urllib

import numpy as np
import tensorflow as tf

FLAGS = None
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
# 开启loggging.
tf.logging.set_verbosity(tf.logging.INFO)


# 定义下载数据集.
def maybe_download(train_data, test_data, predict_data):
    """Maybe downloads training data and returns train and test file names."""
    if train_data:
        train_file_name = train_data
    else:
        train_file = tempfile.NamedTemporaryFile(delete=False)
        urllib.request.urlretrieve(
            "http://download.tensorflow.org/data/abalone_train.csv",
            train_file.name)
        train_file_name = train_file.name
        train_file.close()
        print("Training data is downloaded to %s" % train_file_name)

    if test_data:
        test_file_name = test_data
    else:
        test_file = tempfile.NamedTemporaryFile(delete=False)
        urllib.request.urlretrieve(
            "http://download.tensorflow.org/data/abalone_test.csv", test_file.name)
        test_file_name = test_file.name
        test_file.close()
        print("Test data is downloaded to %s" % test_file_name)

    if predict_data:
        predict_file_name = predict_data
    else:
        predict_file = tempfile.NamedTemporaryFile(delete=False)
        urllib.request.urlretrieve(
            "http://download.tensorflow.org/data/abalone_predict.csv",
            predict_file.name)
        predict_file_name = predict_file.name
        predict_file.close()
        print("Prediction data is downloaded to %s" % predict_file_name)

    return train_file_name, test_file_name, predict_file_name


def model_fn(features, labels, mode, params):
  """Model function for Estimator."""

  # Connect the first hidden layer to input layer
  # (features["x"]) with relu activation
  first_hidden_layer = tf.layers.dense(features["x"], 10, activation=tf.nn.relu)

  # Connect the second hidden layer to first hidden layer with relu
  second_hidden_layer = tf.layers.dense(
      first_hidden_layer, 10, activation=tf.nn.relu)

  # Connect the output layer to second hidden layer (no activation fn)
  output_layer = tf.layers.dense(second_hidden_layer, 1)

  # Reshape output layer to 1-dim Tensor to return predictions
  predictions = tf.reshape(output_layer, [-1])

  # Provide an estimator spec for `ModeKeys.PREDICT`.
  if mode == tf.estimator.ModeKeys.PREDICT:
    return tf.estimator.EstimatorSpec(
        mode=mode,
        predictions={"ages": predictions})

  # Calculate loss using mean squared error
  loss = tf.losses.mean_squared_error(labels, predictions)

  # Calculate root mean squared error as additional eval metric
  eval_metric_ops = {
      "rmse": tf.metrics.root_mean_squared_error(
          tf.cast(labels, tf.float64), predictions)
  }

  optimizer = tf.train.GradientDescentOptimizer(
      learning_rate=params["learning_rate"])
  train_op = optimizer.minimize(
      loss=loss, global_step=tf.train.get_global_step())

  # Provide an estimator spec for `ModeKeys.EVAL` and `ModeKeys.TRAIN` modes.
  return tf.estimator.EstimatorSpec(
      mode=mode,
      loss=loss,
      train_op=train_op,
      eval_metric_ops=eval_metric_ops)







# 创建main()函数,加载train/test/predict数据集.

def main(unused_argv):
    # Load datasets
    abalone_train, abalone_test, abalone_predict = maybe_download(
        FLAGS.train_data, FLAGS.test_data, FLAGS.predict_data)

    # Training examples
    training_set = tf.contrib.learn.datasets.base.load_csv_without_header(
        filename=abalone_train, target_dtype=np.int, features_dtype=np.float64)

    # Test examples
    test_set = tf.contrib.learn.datasets.base.load_csv_without_header(
        filename=abalone_test, target_dtype=np.int, features_dtype=np.float64)

    # Set of 7 examples for which to predict abalone ages
    prediction_set = tf.contrib.learn.datasets.base.load_csv_without_header(
        filename=abalone_predict, target_dtype=np.int, features_dtype=np.float64)


    train_input_fn = tf.estimator.inputs.numpy_input_fn(
        x={"x": np.array(training_set.data)},
        y=np.array(training_set.target),
        num_epochs=None,
        shuffle=True)

    LEARNING_RATE = 0.1
    model_params = {"learning_rate": LEARNING_RATE}

    session_config = tf.ConfigProto(log_device_placement=True)
    session_config.gpu_options.per_process_gpu_memory_fraction = 0.5
    run_config = tf.estimator.RunConfig().replace(session_config=session_config)

    # Instantiate Estimator
    nn = tf.estimator.Estimator(model_fn=model_fn, config=run_config, params=model_params)


    print("training---")
    nn.train(input_fn=train_input_fn, steps=5000)

    # Score accuracy
    test_input_fn = tf.estimator.inputs.numpy_input_fn(
        x={"x": np.array(test_set.data)},
        y=np.array(test_set.target),
        num_epochs=1,
        shuffle=False)

    ev = nn.evaluate(input_fn=test_input_fn)
    print("Loss: %s" % ev["loss"])
    print("Root Mean Squared Error: %s" % ev["rmse"])


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.register("type", "bool", lambda v: v.lower() == "true")
    parser.add_argument(
        "--train_data", type=str, default="", help="Path to the training data.")
    parser.add_argument(
        "--test_data", type=str, default="", help="Path to the test data.")
    parser.add_argument(
        "--predict_data",
        type=str,
        default="",
        help="Path to the prediction data.")
    FLAGS, unparsed = parser.parse_known_args()
    tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)

 

参考: 使用tf.estimator中创建Estimators

阅读更多
版权声明:欢迎转载。转载请注明地址:https://blog.csdn.net/weixin_32820767 https://blog.csdn.net/weixin_32820767/article/details/80347491
个人分类: deep learning
下一篇服务器重启之后开启 docker
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭