《现代的数值计算方法matlab版》习题解答
《现代数值计算方法(版)》
习题参考答案及部分习题解答提示
第一章
− −
1.1 (1) 0.5, 0.00217%, 5; (2) 0.5×10 , 0.217%, 3; (3) 0.5×10 , 0.000217%, 6; (4) 0.5×10 ,
0.0217%, 3.
1.2 (1) 0.5, 0.014%, 4; (2) 0.5×10− , 0.11%, 3; (3) 0.5×10− , 0.0017%, 5; (4) 0.5×10− , 0.017%,
4.
1.3 (1) 3.146, 0.5×10− ; (2) 3.1416, 0.5×10− ; (3) 3.14159.
1.4 提示: × 10−n− = 10− ⇒ n = 5 − lg 2 − lg(a + 1) ⇒ 4 − lg 2 ≤ n ≤ 5 − 2 lg 2 ⇒
a
3.699 ≤ n ≤ 4.3976 ⇒ n = 3.
1.5 |εr (x)| ≤ × 10− ≤ 0.5 × 10− .
a
1.6 提示: × 10−n− < 10− ⇒ n > 4 − 2 lg 2 ⇒ n = 4.
×
1.7 提示: × 10−n− = 3 × 10− ⇒ n = 4 − lg 6 − lg(a + 1) ⇒ 3 − lg 6 ≤ n ≤ 3 − lg 1.2 ⇒
a
2.2218 ≤ n ≤ 2.9208 ⇒ n = 2.
1.8 提示: x, = √ − = 28 ± √783, x = 28 + 27.982 = 55.982 ≈ 55.98, x = 28 − √783 =
−
√
= ≈ 0.01786.
.
◦ ◦
1.10 提示: (1) sin(x + y) − sin x = 2 sin y cos(x + y ), (2) 1 − cos 1◦ = − = , (3)
◦ ◦
√ √
√
ln( 10 + 1 − 10 ) = ln = − ln( 10 + 1 + 10 ).
1.11 (1) (A) 比较准确; (2) (A) 比较准确.
1.12 算法 2 准确. 在算法 1 中, ε ≈ 0.2231 带有误差 0.5 × 10− , 而这个误差在以后的每次计算中
顺次以4 , 4 , · · · 传播到 In 中. 而算法 2 中的误差是按 减少的, 是稳定的计算公式.
第二章
2.1 提示: 因B 奇异, 故 ∃x ≠ 0, 使得 Bx = 0. 于是, Ax = (A − B)x,x = A− (A − B)x,∥x ∥ ≤
∥A− ∥∥A − B ∥∥x ∥, 1 ≤ ∥A− ∥ · ∥A − B ∥,即∥A− ∥ ≥ .
∥A−B ∥
2.2 ∥x ∥ = 9, ∥x ∥ = √29, ∥x ∥ = 4; ∥A ∥ = 8, ∥A ∥ = 4√2, ∥A ∥ = 6.
∞ ∞