周庄不买门票攻略_苏州四(多)日游攻略

1ea85793cd42729618a7e5c3e22513e5.png

苏州是个历史文化与与人文气息都特别浓厚的城市,去一次就喜欢上了,时间充足建议待个半月一月,把周围十几个古镇都走走。时间仓促的话建议从市区开始玩,火车到苏州站,苏州值得玩地方无非两个,一是苏州园林,二是古镇。但是园林和古镇太多了,有重点玩几个就好。

beb624461e13cb8af84ecc797e0f5d3a.png

Day 1 苏州站----拙政园(园林最大、代表)--苏州博物馆--- 狮子林(假山、石头出名)----平江路(小吃街晚上看夜景),晚上住在平江路附近或者苏州大学(或北校)附近。

3b59c2ec1d329a6f80bcd7076fa7ae51.png

Day 2 虎丘----留园(景色多) -----七里山塘街(小吃街),可住附近

或Day 2网师园----沧浪亭---观前街(园林与小吃街,基本和拙政园、留园、狮子林一样)

62a98a513faf83e237ad5cf2ba30049f.png

Day 3 寒山寺五景区(寒山寺、枫桥、铁铃关、枫桥古镇、古运河(京杭大运河的一段))

f3ff4df8616a2ef0cb62e667f55d14c6.png

Day 4 古镇,苏州周围十几个古镇,甪直古镇距离苏州最近,但是小,人少。周庄,最为出名,商业化最严重的。同里古镇,与周庄齐名,但是相对周庄人少点。另外还有木渎古镇、锦溪古镇、千灯古镇、沙溪古镇。景色差不多,玩一天住一晚看个夜景就好。

735c4d6767d5b680699e8dc313b086f6.png

以上为大致的路线,可以扩充六七天,可以删减到一两天,关于预算、住宿、交通、门票、吃。苏州坑还是蛮多的,比如旅行团告诉你可以低价买好几个景区的票,跟团进去就不管了随便玩,并不是的,都会拉你去消费,特别尴尬。吃东西要问好价格,住宿对比飞猪、去哪、携程、美团以及连锁客户端,除了在古镇可以住客栈,建议还是住连锁的汉庭如家,安全卫生有保障。预算的话看个人消费吧,这个不好预估,一般四天苏州,可劲玩(不买特产)3000足够了,我们穷游也就1500(捂脸)。对了,关于特产,尽量不要买,死贵还坑,现在所有景区所有特产某宝都有,物美价廉,景区小玩意基本来自于义乌与临沂。最后就是路线,百度高德地图全部搞定,去古镇汽车站都有直达汽车,不要拼车以及做其他黑车,太危险,虽然支付宝微信接近万能,但出门还是尽量备点现金和零钱,保不齐就得用现金。因为时间原因就不码字详细介绍,关于以上,有问题可再问我。

数据集介绍:野生动物与家畜目标检测数据集 数据集名称:野生动物与家畜目标检测数据集 数据规模: - 训练集:1,540张图片 - 验证集:377张图片 - 测试集:316张图片 分类类别: Brown-bear(棕熊)、Chicken(鸡)、Fox(狐狸)、Hedgehog(刺猬)、Horse(马)、Mouse(老鼠)、Sheep(绵羊)、Snake(蛇)、Turtle(龟)、Rabbit(兔)及通用object(物体)共11个类别 标注格式: YOLO格式标注,包含归一化坐标与类别索引,支持目标检测模型训练 数据特性: 涵盖航拍与地面视角,包含动物个体及群体场景,适用于复杂环境下的目标识别 农业智能化管理: 通过检测家畜(鸡/马/绵羊等)数量及活动状态,辅助畜牧场自动化管理 生态监测系统: 支持野生动物(棕熊/狐狸/刺猬等)识别与追踪,用于自然保护区生物样性研究 智能安防应用: 检测农场周边危险动物(蛇/狐狸),构建入侵预警系统 动物行为研究: 提供物种共存场景数据,支持动物群体交互行为分析 高实用性标注体系: - 精细标注包含动物完整轮廓的边界框 - 特别区分野生动物与家畜类别,支持跨场景迁移学习 维度覆盖: - 包含昼间/复杂背景/遮挡场景 - 涵盖陆地常见中小型动物与禽类 - 提供通用object类别适配扩展需求 工程适配性强: - 原生YOLO格式适配主流检测框架(YOLOv5/v7/v8等) - 验证集与测试集比例科学,支持可靠模型评估 生态价值突出: - 同步覆盖濒危物种(龟类)与常见物种 - 支持生物样性保护与农业生产的双重应用场景
内容概要:本文档详细介绍了Python实现TSO-ELM(金枪鱼群优化算法优化极限学习机)输入单输出回归预测的项目实例。极限学习机(ELM)作为一种快速训练的前馈神经网络算法,虽然具有训练速度快、计算简单等优点,但也存在局部最优解和参数敏感性的问题。金枪鱼群优化算法(TSO)通过模拟金枪鱼群体觅食行为,具有较强的全局搜索能力。将TSO与ELM结合形成的TSO-ELM模型,可以优化ELM的输入层和隐藏层之间的权重,提高回归预测的准确性。项目包括数据预处理、TSO优化、ELM回归模型训练和预测输出个主要步骤,并提供了详细的代码示例。; 适合人群:对机器学习、优化算法有一定了解的数据科学家、算法工程师和研究人员,特别是那些希望深入理解智能优化算法在回归预测任务中的应用的人群。; 使用场景及目标:① 提升ELM在输入单输出回归预测中的性能,特别是在处理非线性问题时的预测精度;② 解决ELM中的局部最优解和参数敏感性问题;③ 优化ELM的隐层权重和偏置值,提高模型的表达能力和预测能力;④ 在金融、气象、能源、医疗、交通等领域提供更准确的预测模型。; 阅读建议:本文档仅提供了理论解释,还包含详细的代码实现,建议读者在阅读过程中结合代码进行实践,理解TSO-ELM模型的工作原理,并尝试调整参数以优化预测效果。同时,读者应关注TSO算法在高维复杂问题中的应用挑战,思考如何改进优化策略。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值