dfp方法例题_天津大学《最优化方法》复习题(含答案) -

本文提供了天津大学《最优化方法》课程的复习题及答案,涵盖章节包括概述、线性规划和无约束最优化方法。题目类型包括判断、填空、简述、证明等,涉及概念如凸规划、下降算法、线性规划的性质、对偶理论以及各种最优化算法。
摘要由CSDN通过智能技术生成

天津大学《最优化方法》复习题(含答案)

第一章 概述(包括凸规划)

一、 判断与填空题

1 2

3 设f:D?Rn?R. 若x?R,对于一切x?R恒有f(x?)?f(x),则称x为

最优化问题

n4 设f:D?R?R. 若x?D,存在x的某邻域N?(x?),使得对一切

???nn?argmaxf(x)?argmin[?f(x)]. √

x?Rnx?Rnmaxf(x):x?D?Rn??minf(x):x?D?Rn. ?

????minx?Df(x)的全局最优解. ?

x?N?(x?)恒有f(x?)?f(x),则称x?为最优化问题minf(x)的严格局部最

x?D优解. ?

5 给定一个最优化问题,那么它的最优值是一个定值. √

6 非空集合D?R为凸集当且仅当D中任意两点连线段上任一点属于D. √ 7 非空集合D?R为凸集当且仅当D中任意有限个点的凸组合仍属于D. √

8 任意两个凸集的并集为凸集. ?

n9 函数f:D?R?R为凸集D上的凸函数当且仅当?f为D上的凹函数. √ ?n10 设f:D?R?R为凸集D上的可微凸函数,x?D. 则对?x?D,有

nnf(x)?f(x?)??f(x?)T(x?x?). ?

11 若c(x)是凹函数,则D?{x?R c(x)?0}是凸集。 √ 12 设xn??为由求解minkx?Df(x)的算法A产生的迭代序列,假设算法A为下降算法,

则对?k??0,1,2,??,恒有 f(xk?1)?f(xk) . 13 算法迭代时的终止准则(写出三种):_____________________________________。

14 凸规划的全体极小点组成

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值