天津大学《最优化方法》复习题(含答案)
第一章 概述(包括凸规划)
一、 判断与填空题
1 2
3 设f:D?Rn?R. 若x?R,对于一切x?R恒有f(x?)?f(x),则称x为
最优化问题
n4 设f:D?R?R. 若x?D,存在x的某邻域N?(x?),使得对一切
???nn?argmaxf(x)?argmin[?f(x)]. √
x?Rnx?Rnmaxf(x):x?D?Rn??minf(x):x?D?Rn. ?
????minx?Df(x)的全局最优解. ?
x?N?(x?)恒有f(x?)?f(x),则称x?为最优化问题minf(x)的严格局部最
x?D优解. ?
5 给定一个最优化问题,那么它的最优值是一个定值. √
6 非空集合D?R为凸集当且仅当D中任意两点连线段上任一点属于D. √ 7 非空集合D?R为凸集当且仅当D中任意有限个点的凸组合仍属于D. √
8 任意两个凸集的并集为凸集. ?
n9 函数f:D?R?R为凸集D上的凸函数当且仅当?f为D上的凹函数. √ ?n10 设f:D?R?R为凸集D上的可微凸函数,x?D. 则对?x?D,有
nnf(x)?f(x?)??f(x?)T(x?x?). ?
11 若c(x)是凹函数,则D?{x?R c(x)?0}是凸集。 √ 12 设xn??为由求解minkx?Df(x)的算法A产生的迭代序列,假设算法A为下降算法,
则对?k??0,1,2,??,恒有 f(xk?1)?f(xk) . 13 算法迭代时的终止准则(写出三种):_____________________________________。
14 凸规划的全体极小点组成