a点到b点最短路线有多少条_再说高分双动点几何最值问题,逢考必有,孩子吃透数学稳上140...

动点问题是近几年来中考数学的热点题型,这类试题信息量大,其中以灵活多变而著称的双动点问题更成为中考试题的热点中的热点,双动点问题对同学们获取信息和处理信息的能力要求更高高,解题时需要用运动和变化的眼光去观察和研究问题,挖掘运动、变化的全过程,并特别关注运动与变化中的不变量、不变关系或特殊关系,动中取静,静中求动,透过现象看本质,找到运动过程中不变的规律,这一类问题又会让人感觉精彩绝伦,回味无穷.

e1e66c5e55134ae022794d2beda8b593.png

而几何最值问题是指在一定条件下,求平面几何中某个动态的量(长度、角度、面积等)的最大值或最小值.求解几何最值问题要注意分析特殊位置与极端位置,猜测、找到最值,然后利用几何不等关系进行一般情形下的证明,或通过设未知数与相关计算,将所求量转化成函数表达式,利用代数手段计算出最值.在求一些固定了某个端点的线段最值时,往往可以通过找到一个中间点,该点到所求线段两端点长度是定值,再利用三角形三边关系得到最值.而对于双动点最值问题综合度更高,立意深,对学生的能力要求高,往往形成学生学习中的难点,尤其是双动点问题中的最值问题,对学生思维要求更高.如何引导学生解决这类问题,成为中考复习的一个应该设法迈过去的坎。本文以双动点中的线段最值问题、面积最值问题、情景最值问题为例,进行解析,以期找到解决这类问题的一般方法.

bc52b9210b01a3d2b8464d46cc80480b.png

类型1、双动点形成的线段最值问题

1.如图,在菱形ABCD中,∠B=60°,AB=a,点E,F分别是边AB,AD上的动点,且AE+AF=a,则线段EF的最小值为( )

206abb059bed8e21a9e2d963b9e28052.png

【解析】由在边长为a的菱形ABCD中,易得△ABC、△CAD都是边长为a的正三角形,继而证得△ACE≌△DCF,继而证得△CEF是正三角形,继而可得当动点E运动到点B或点A时,CE的最大值为a,当CE⊥AB,即E为BD的中点时,CE的最小值为√3a/2,因为EF=CE,所以EF的最小值为√3a/2.故选:B.

变式1-1.如图,在菱形ABCD中,AB=10,∠DAB=60°,P是对角线AC上一动点,E、F分别是线段AB和BC上的动点,则PE+PF的最小值是_______.

8ba092c773a76c13a143a989673091d5.png

【解析】本题考查了菱形的性质和轴对称﹣最短路线问题,解题的关键是得到PE+PF的最小值为菱形ABCD中AD边的高.

当点E(E′)关于AC对称点E″与P、F(F′)三点共线且与AD垂直时,易求E″F(F′)的长就是PE+PF的最小值.在Rt△ABM中,AB=2,∠BAD=60°,所以E″F=BM=AB•sin∠BAD=5√3.故答案是:5√3.

变式1-2.如图,在菱形ABCD中,∠BAD=120°,E、F分别是边AB和BC的中点,AC=2,点P为对角线AC上一动点,则PE+EF的最小值为_______

f022429cd3453e67d49e9e20b97e05d3.png

【解析】由题意可知EF为△ABC的中位线,由中位线定理可知EF=1/2AC=1为定值,要使PE+EF最小只需PE最小,由垂线段最短可知当EP⊥AC时,PE最短.

∵∠BAC=120°,∴∠B=60°.

又∵AB=BC,∴△ABC为等边三角形,

∴AB=AC=2,∠BAC=60°.

Rt△AEP中,AE=1/2AB=1,EP=AEsin60°=√3/2,

∴PE+EF的最小值为;1+ √3/2.故答案为:1+ √3/2.

54879f171e8210a73803174665d9e352.png

变式1-3.(2018春•常熟市期末)如图,在▱ABCD中,∠B=60°,AB=4,点H、G分别是边CD、BC上的动点.连接AH、HG,点E、F分别是AH、GH的中点,连接EF.则EF的最小值为 ________.

e4299de5d24bab9e82fae19a3a040055.png

【解答】本题考查平行四边形的性质、三角形的中位线定理、垂线段最短等知识,解题的关键是学会添加常用辅助线,本题的突破点是确定EF的最小值,就是AG的最小值,

如图1,连接AG,∵点E、F分别是AH、GH的中点,∴EF=1/2AG,

∴EF的最小值,就是AG的最小值,

当AG⊥BC时,AG最小,如图2,Rt△ABG中,∠B=60°,∴∠BAG=30°,

∵AB=4,∴BG=2,AG=2√3,∴EF=1/2AG=√3,∴EF的最小值是√3.

故答案为:√3.

变式1-4.如图,菱形ABCD的边长是2cm,∠A=60°,点E、F分别是边AB、CD上的动点,则线段EF的最小值为 _______cm.

8e176c84fee280e06a81d35defda705b.png

【解析】本题考查了菱形的性质的运用,直角三角形的性质的运用,勾股定理的运用,垂线段最短的运用,解答时根据两平行线间垂线段最短求解是关键. 作DM⊥AB与M,∴∠AMD=90°.

∵四边形ABCD是菱形,∴AD=AB=BC=CD=2cm.

∵∠A=60°,∴∠ADM=30°.∴AM=1/2AD=1cm.

在Rt△AMD中,由勾股定理,得DM=√3cm.

∴线段EF的最小值为√3.故答案为:√3.

bd868c04ee39ed0064757f9b0baf5873.png

2.(2018秋•沭阳县校级期中)如图,矩形ABCD中,AB=2,BC=3,分别以A、D为圆心,1为半径画圆,E、F分别是⊙A、⊙D上的一动点,P是BC上的一动点,则PE+PF的最小值是( )

A.2 B.3 C.4 D.5

421f75c05584b13d975840847734b2ad.png

【解析】以BC为轴作矩形ABCD的对称图形A′BCD′以及对称圆D′,连接AD′交BC于P,交⊙A、⊙D′于E、F′,连接PD,交⊙D于F,EF′就是PE+PF最小值; ∵矩形ABCD中,AB=2,BC=3,圆A的半径为1,

∴A′D′=BC=3,AA′=2AB=4,AE=D′F′=1,∴AD′=5,

EF′=5﹣2=3∴PE+PF=PF′+PE=EF′=3,故选:B.

点评 :在数学思维应用中要特别重视数形结合的思想,从中找到最值的条件是关键.

变式2.(2018秋•泗阳县期中)如图,平面直角坐标系中,分别以点A(2,3)、点B(3,4)为圆心,以1、3为半径作⊙A、⊙B,M,N分别是⊙A、⊙B上的动点,P为x轴上的动点,则PM+PN的最小值为_______.

fe441be592ff4f1115b562b8dea52655.png

【解析】作⊙A关于x轴的对称⊙A′,连接BA′分别交⊙A′和⊙B于M、N,交x轴于P,如图,根据两点之间线段最短得到此时PM+PN最小,再利用对称确定A′的坐标,接着利用两点间的距离公式计算出A′B的长为5√2,然后用A′B的长减去两个圆的半径即可得到MN的长为5√2 -4,即得到PM+PN的最小值.

f6b6f4c5e592ecada0fb5e3066577cd3.png

类型2、双动点问题形成的面积最值问题

3.如图,AB是⊙O的一条弦,M,N是⊙O上两个动点,且在弦AB的异侧,若∠AMB=45°,若四边形MANB面积的最大值是4√2,则⊙O的半径为______ .

06a5ef9e9771a671129bb73def884592.png

【解析】本题考查了垂径定理、圆周角定理、等腰直角三角形的判定与性质、四边形面积的计算;熟练掌握垂径定理和圆周角定理,得出四边形MANB面积取最大值时M点运动到D点,N点运动到E点是解决问题的关键.

过点O作OC⊥AB于C,交⊙O于D、E两点,连结OA、OB、DA、DB、EA、EB,根据圆周角定理得∠AOB=2∠AMB=90°,则△OAB为等腰直角三角形,所以AB=OA,由于S四边形MANB=S△MAB+S△NAB,而当M点到AB的距离最大,△MAB的面积最大;当N点到AB的距离最大时,△NAB的面积最大,即M点运动到D点,N点运动到E点,所以四边形MANB面积的最大值=S四边形DAEB=1/2AB×DE=4√2,所以1/2×√2OA×2OA=4√2,解得:OA=2,即⊙O的半径为2;故答案为:2.

变式3.如图,AB是⊙O的一条弦,C,D是⊙O上的两个动点,且在AB弦的异侧,连接CD.

(1)已知AC=BC,AB平分∠CBD,求证:AB=CD;

(2)已知∠ADB=45°,⊙O的半径为1,求四边形ACBD面积的最大值.

29cae5df1d7432e740ef477b5961b189.png
d428f2e8a620cf4484cccf135f6b2b38.png

类型3、双动点问题中形成的情景最值问题

4.如图①,在边长为6cm的等边三角形ABC的三边上,有三个动点DEF(不考虑与ABC重合),点DAB运动,点EBC运动,点FCA运动,三点同时运动,到终点结束,且速度均为1cm/s.设运动的时间为t s,解答下列问题:

(1)求证:如图①,不论t如何变化,△DEF始终为等边三角形.

(2)如图①,记△DEF的面积为y(cm2),求yt的函数关系式.并求当t取何值时,y最小,最小值为多少?

(3)如图②,建立平面直角坐标系,过点E作直线EQAB,交AC于点Q,当直线EQ运动到何处时,能使△AEQ的面积最大?求出这个最大值和此时点Q的坐标.

6e8e02b590c112d6b9d4446eeaede674.png

【解析】(1)由三角形ABC为等边三角形,以及ADBECF,进而得出三角形ADF与三角形CFE与三角形BED全等,利用全等三角形对应边相等得到BFDFDE,即可得证;

(2)作DGBCGAHBCH,表示出AHDG,进而表示出三角形ABC与三角形BED面积,由三角形ABC面积减去3个三角形BED面积表示出yt的函数解析式,利用二次函数性质求出y的最小值,以及此时t的值;

3b468a62015f8b465be9530ad461047d.png
fd8d2e6a613610db242de98804de4922.png

5.如图,四边形OABC为直角梯形,A(4,0),B(3,4),C(0,4).点MO出发以每秒2个单位长度的速度向A运动;点NB同时出发,以每秒1个单位长度的速度向C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点NNP垂直x轴于点P,连接ACNPQ,连接MQ

(1)点 ______(填MN)能到达终点;

(2)求△AQM的面积S与运动时间t的函数关系式,并写出自变量t的取值范围,当t为何值时,S的值最大;

(3)是否存在点M,使得△AQM为直角三角形?若存在,求出点M的坐标;若不存在,说明理由.

c6e7a43b091e148c5c62228c260fb526.png

【解析】(1)(BC÷点N的运动速度)与(OA÷点M的运动速度)可知点M能到达终点.

(2)经过t秒时可得NByOM﹣2t.根据∠BCA=∠MAQ=45°推出QNCNPQ的值.求出St的函数关系式后根据t的值求出S的最大值.

(3)存在.设经过t秒时,NBtOM=2t

CN=3﹣tAM=4﹣2t,∴∠BCA=∠MAQ=45°

①若∠AQM=90°,则PQ是等腰Rt△MQA底边MA上的高

PQ是底边MA的中线,∴PQAP=1/2MA

∴1+t=1/2(4﹣2t),∴t=1/2,∴点M的坐标为(1,0)

②若∠QMA=90°,此时QMQP重合,∴QMQPMA

∴1+t=4﹣2t,∴t=1,∴点M的坐标为(2,0).

45abfca3b51cf334a8faf300a35cf8a4.png

6.如图,在平面直角坐标系中,抛物线yax2+bx+c(a≠0)与y轴交与点C(0,3),与x轴交于AB两点,点B坐标为(4,0),抛物线的对称轴方程为x=1.

(1)求抛物线的解析式;

(2)点MA点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点NB点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动,设△MBN的面积为S,点M运动时间为t,试求St的函数关系,并求S的最大值;

(3)在点M运动过程中,是否存在某一时刻t,使△MBN为直角三角形?若存在,求出t值;若不存在,请说明理由.

【解析】本题是二次函数的综合题型,其中涉及到的知识点有待定系数法求二次函数解析式和三角形的面积求法.在求有关动点问题时要注意该点的运动范围,即自变量的取值范围.

59fde7c966824e36d0b1d287efe662f2.png
205617c3a660223cf01d3ca71d0cd2f7.png

最新考题精炼

1.(2019•碑林区校级二模)解决问题:

(1)如图①,半径为4的⊙O外有一点P,且PO=7,点A在⊙O上,则PA的最大值和最小值分别是_____ 和_______ .

(2)如图②,扇形AOB的半径为4,∠AOB=45°,P为弧AB上一点,分别在OA边找点E,在OB边上找一点F,使得△PEF周长的最小,请在图②中确定点E、F的位置并直接写出△PEF周长的最小值;

拓展应用

(3)如图③,正方形ABCD的边长为4;E是CD上一点(不与D、C重合),CF⊥BE于F,P在BE上,且PF=CF,M、N分别是AB、AC上动点,求△PMN周长的最小值.

5ba5782813d8de347e6ba2e62b5d183f.png

【解析】(1)根据圆外一点P到这个圆上所有点的距离中,最远是和最近的点是过圆心和该点的直线与圆的交点,容易求出最大值与最小值分别为11和3;

(2)作点P关于直线OA的对称点P1,作点P关于直线OB的对称点P2,连接P1、P2,与OA、OB分别交于点E、F,点E、F即为所求,此时△PEF周长最小,然后根据等腰直角三角形求解即可;

(3)类似(2)题作对称点,△PMN周长最小=P1P2,然后由三角形相似和勾股定理求解.

736bcf0854cbbb44b08d24026cada43b.png

2.(2019•陕西模拟)如图1,在边长为4的菱形ABCD中,AC为其对角线,∠ABC=60°点M、N分别是边BC、边CD上的动点,且MB=NC.连接AM、AN、MN.MN交AC于点P.

(1)△AMN是什么特殊的三角形?说明理由.并求其面积最小值;

(2)求点P到直线CD距离的最大值;

(3)如图2,已知MB=NC=1,点E、F分别是边AM、边AN上的动点,连接EF、PF,EF+PF是否存在最小值?若存在,求出最小值及此时AE、AF的长;若不存在,请说明理由.

2692e11369af6a0da631e939ee02fd05.png

【解析】(1)△AMN是等边三角形,AM⊥BC时面积最小.只要证明△AMB≌△ANC,推出AM=AN,∠BAM=∠CAN即可解决问题.

(2)如图2中,当AM⊥BC时,点P到CD距离最大.作PE⊥CD于E.

(3)如图3中,作点P关于AN的对称点为K,过点K做AM的垂线,交AN为F,交AM为E,此时,EF+PF最短,连接AK、作AG⊥MN于G,MH⊥AB于H.首先求出AM、AG的长,再证明△AGP≌△KEA,推出KE=AG即可.

71e817c0ba48da82086d9dd427d3ce10.png

最后应强调一下,此类问题在中考数学中的难度不低,是很多考生丢分的主要地方。大家在最后中考复习阶段,学会掌握解动点问题的要领,学会总结反思,达到"解一题会一类"的目的。在研学这类问题应把握静中找动,实现从特殊到一般的转化。动中找静,找到运动过程中不变的数学模型或规律,再从一般到特殊,找到相应的关系式,把想知道的量用常量或含自变量的关系式表示出来,利用临界情况解决问题。动静结合,其乐无穷。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值