这里以pascal voc数据集(2007+2012联合训练)为例,该方法适用于其他数据集(包括自己建立的数据集)
一、
二、下载backbone权重文件yolov4.conv.137
将下载的yolov4.conv.137放在darknet目录中即可。
三、修改配置文件
(1)cfg/voc.data
将下图:
改成:
(2)将cfg/yolov4-custom.cfg进行复制,并将复制后的文件命名为yolo-obj.cfg。
修改cfg/yolo-obj.cfg文件:
①如果在训练过程中出现out of memory,将subdivisions修改为32或者64。
②
③在文件中,使用Ctrl+F搜索yolo,一共出现三个地方。修改yolo下面的classes,以及yolo上面的filters:
四、开始训练
./darknet detector train cfg/voc.data cfg/yolo-obj.cfg yolov4.conv.137
如果想要保存训练日志,则使用:
# xxxx为路径和log文件名字,自己设置就行
./darknet detector train cfg/voc.data cfg/yolo-obj.cfg yolov4.conv.137 2>1 | tee /xxxx/xxxxx.log
训练结束后,训练的模型会放在darknet/backup中。
五、测试
./darknet detector test cfg/voc.data cfg/yolo-obj.cfg yolo-obj_xxxx.weights
>>>>>>>>>>>>>有什么其他的问题私聊我即可。
>>>>>>>>>>>>>或者有什么其他大家想知道的,告诉我,我来更。
******************************************************
后续还会补充更详细的细节和一些拓展(如通过不同的设置进行训练测试等)
******************************************************
标签:yolov4,obj,voc,cfg,darknet,yolo,pascal
来源: https://blog.csdn.net/ly_twt/article/details/105761312