题目描述
这是 LeetCode 上的 593. 有效的正方形 ,难度为 中等。
Tag : 「模拟」、「数学」、「计算几何」
给定 2D
空间中四个点的坐标 p1
, p2
, p3
和 p4
,如果这四个点构成一个正方形,则返回 true
。
点的坐标 pi
表示为
。输入 不是 按任何顺序给出的。
一个 有效的正方形 有四条等边和四个等角(90
度角)。
示例 1:
输入: p1 = [0,0], p2 = [1,1], p3 = [1,0], p4 = [0,1]
输出: True
示例 2:
输入:p1 = [0,0], p2 = [1,1], p3 = [1,0], p4 = [0,12]
输出:false
示例 3:
输入:p1 = [1,0], p2 = [-1,0], p3 = [0,1], p4 = [0,-1]
输出:true
提示:
计算几何
根据题意进行模拟即可。
从给定的 个顶点中选 个顶点,检查其能否形成「直角三角形」,同时保存下来首个直角三角形的直角边边长,供后续其余直角三角形进行对比(注意不能共点,即直角边长不能为 )。
Java 代码:
class Solution {
long len = -1;
public boolean validSquare(int[] a, int[] b, int[] c, int[] d) {
return calc(a, b, c) && calc(a, b, d) && calc(a, c, d) && calc(b, c, d);
}
boolean calc(int[] a, int[] b, int[] c) {
long l1 = (a[0] - b[0]) * (a[0] - b[0]) + (a[1] - b[1]) * (a[1] - b[1]);
long l2 = (a[0] - c[0]) * (a[0] - c[0]) + (a[1] - c[1]) * (a[1] - c[1]);
long l3 = (b[0] - c[0]) * (b[0] - c[0]) + (b[1] - c[1]) * (b[1] - c[1]);
boolean ok = (l1 == l2 && l1 + l2 == l3) || (l1 == l3 && l1 + l3 == l2) || (l2 == l3 && l2 + l3 == l1);
if (!ok) return false;
if (len == -1) len = Math.min(l1, l2);
else if (len == 0 || len != Math.min(l1, l2)) return false;
return true;
}
}
TypeScript 代码:
let len = -1
function validSquare(a: number[], b: number[], c: number[], d: number[]): boolean {
len = -1
return calc(a, b, c) && calc(a, b, d) && calc(a, c, d) && calc(b, c, d)
};
function calc(a: number[], b: number[], c: number[]): boolean {
const l1 = (a[0] - b[0]) * (a[0] - b[0]) + (a[1] - b[1]) * (a[1] - b[1])
const l2 = (a[0] - c[0]) * (a[0] - c[0]) + (a[1] - c[1]) * (a[1] - c[1])
const l3 = (b[0] - c[0]) * (b[0] - c[0]) + (b[1] - c[1]) * (b[1] - c[1])
const ok = (l1 == l2 && l1 + l2 == l3) || (l1 == l3 && l1 + l3 == l2) || (l2 == l3 && l2 + l3 == l1)
if (!ok) return false
if (len == -1) len = Math.min(l1, l2)
else if (len == 0 || len != Math.min(l1, l2)) return false
return true
}
-
时间复杂度: -
空间复杂度:
最后
这是我们「刷穿 LeetCode」系列文章的第 No.593
篇,系列开始于 2021/01/01,截止于起始日 LeetCode 上共有 1916 道题目,部分是有锁题,我们将先把所有不带锁的题目刷完。
在这个系列文章里面,除了讲解解题思路以外,还会尽可能给出最为简洁的代码。如果涉及通解还会相应的代码模板。
为了方便各位同学能够电脑上进行调试和提交代码,我建立了相关的仓库:https://github.com/SharingSource/LogicStack-LeetCode 。
在仓库地址里,你可以看到系列文章的题解链接、系列文章的相应代码、LeetCode 原题链接和其他优选题解。
更多更全更热门的「笔试/面试」相关资料可访问排版精美的 合集新基地 🎉🎉
本文由 mdnice 多平台发布