拼多多(PDD)社招一面原题

未成年游戏退费

5 月 28 日,中国互联网协会发布《未成年人网络游戏服务消费管理要求(征求意见稿)》团体标准。

该标准是游戏行业首个完整的消费管理规范,可用于未成年人游戏消费退费纠纷解决,也可为相关行政部门、司法机关提供参考。

来源:光明网
来源:光明网

根据各自过错情况,该标准明确划分了网络游戏服务提供者、监护人等责任方的担责比例。

该标准针对常见的场景,给出了具体的责任划分。

举个 🌰,若游戏服务商已依法采取了「防沉迷措施」,但监护人帮助未成年人"绕过"防沉迷限制,或监护人未充分履行监护职责,该标准建议过错方承担责任比例 30%-70%,若存在多次过错行为,可能承担全部责任。

近几年,关于未成年在网络平台巨额消费(游戏充值 or 直播打赏)的新闻屡见不鲜。

一些舆论到位的案例,虽都得到了全额退款。但新闻的发生,往往少不了监护人的责任,新标准的出台一定程度上弥补这一缺失。

对于「首个未成年人游戏退费标准发布」,你怎么看?

...

回归主题。

来一道近期读者投稿的,在「拼多多(社招一面)」遇到的算法原题。

题目描述

平台:LeetCode

题号:139

给你一个字符串 s 和一个字符串列表 wordDict 作为字典。

请你判断是否可以利用字典中出现的单词拼接出 s

注意:不要求字典中出现的单词全部都使用,并且字典中的单词可以重复使用。

示例 1:

输入: s = "leetcode", wordDict = ["leet""code"]

输出: true

解释: 返回 true 因为 "leetcode" 可以由 "leet" 和 "code" 拼接成。

示例 2:

输入: s = "applepenapple", wordDict = ["apple""pen"]

输出: true

解释: 返回 true 因为 "applepenapple" 可以由 "apple" "pen" "apple" 拼接成。
     注意,你可以重复使用字典中的单词。

示例 3:

输入: s = "catsandog", wordDict = ["cats""dog""sand""and""cat"]

输出: false

提示:

  • swordDict[i] 仅有小写英文字母组成
  • wordDict 中的所有字符串 互不相同

序列 DP

将字符串 s 长度记为 nwordDict 长度记为 m

为了方便,我们调整字符串 s 以及将要用到的动规数组的下标从 1 开始。

定义 为考虑前 i 个字符,能否使用 wordDict 拼凑出来:当 代表 能够使用 wordDict 所拼凑,反之则不能。

不失一般性考虑 该如何转移:由于 需要考虑 范围内的字符,若 True 说明整个 都能够使用 wordDict 拼凑,自然也包括最后一个字符 所在字符串 sub

「我们可以枚举最后一个字符所在字符串的左端点 ,若 wordDict 中出现过,并且 ,说明 能够被拼凑,并且子串 sub 也在 wordDict,可得 f[i] = True。」

为了快速判断某个字符是否在 wordDict 中出现,我们可以使用 Set 结构对 进行转存。

Java 代码:

class Solution {
    public boolean wordBreak(String s, List<String> wordDict) {
        Set<String> set = new HashSet<>();
        for (String word : wordDict) set.add(word);
        int n = s.length();
        boolean[] f = new boolean[n + 10];
        f[0] = true;
        for (int i = 1; i <= n; i++) {
            for (int j = 1; j <= i && !f[i]; j++) {
                String sub = s.substring(j - 1, i);
                if (set.contains(sub)) f[i] = f[j - 1]; 
            }
        }
        return f[n];
    }
}

C++ 代码:

class Solution {
public:
    bool wordBreak(string s, vector<string>& wordDict) {
        unordered_set<stringset;
        for (const string& word : wordDict) {
            set.insert(word);
        }
        int n = s.length();
        vector<boolf(n + 10false);
        f[0] = true;
        for (int i = 1; i <= n; ++i) {
            for (int j = 1; j <= i && !f[i]; ++j) {
                string sub = s.substr(j - 1, i - j + 1);
                if (set.find(sub) != set.end()) f[i] = f[j - 1] || f[i];
            }
        }
        return f[n];
    }
};

Python 代码:

class Solution:
    def wordBreak(self, s: str, wordDict: List[str]) -> bool:
        ss = set(wordDict)
        n = len(s)
        f = [False] * (n + 10)
        f[0] = True
        for i in range(1, n + 1):
            j = i
            while j >= 1 and not f[i]:
                sub = s[j - 1:i]
                if sub in ss:
                    f[i] = f[j - 1]
                j -= 1
        return f[n]

TypeScript 代码:

function wordBreak(s: string, wordDict: string[]): boolean {
    const ss = new Set<string>(wordDict)
    const n = s.length
    const f = new Array<boolean>(n + 10).fill(false)
    f[0] = true
    for (let i = 1; i <= n; i++) {
        for (let j = i; j >= 1 && !f[i]; j--) {
            const sub = s.substring(j - 1, i)
            if (ss.has(sub)) f[i] = f[j - 1]
        }
    }
    return f[n]
}
  • 时间复杂度:将 wordDict 转存在 Set 复杂度为 DP 过程复忽裁剪子串和查询 Set 结构的常数,复杂度为
  • 空间复杂度:

总结

这里简单说下「线性 DP」和「序列 DP」的区别。

线性 DP 通常强调「状态转移所依赖的前驱状态」是由给定数组所提供的,即拓扑序是由原数组直接给出。更大白话来说就是通常有 依赖于

这就限定了线性 DP 的复杂度是简单由「状态数量(或者说是维度数)」所决定。

序列 DP 通常需要结合题意来寻找前驱状态,即需要自身寻找拓扑序关系(例如本题,需要自己通过枚举的方式来找左端点,从而找到可转移的前驱状态 )。

这就限定了序列 DP 的复杂度是由「状态数 + 找前驱」的复杂度所共同决定。也直接导致了序列 DP 有很多玩法,往往能够结合其他知识点出题,来优化找前驱这一操作,通常是利用某些性质,或是利用数据结构进行优化。

最后

给大伙通知一下 📢 :

全网最低价 LeetCode 会员目前仍可用 ~

📅 年度会员:有效期加赠两个月!!; 季度会员:有效期加赠两周!!

🧧 年度会员:获 66.66 现金红包!!; 季度会员:获 22.22 现金红包!!

🎁 年度会员:参与当月丰厚专属实物抽奖(中奖率 > 30%)!!

专属链接:leetcode.cn/premium/?promoChannel=acoier

我是宫水三叶,每天都会分享算法知识,并和大家聊聊近期的所见所闻。

欢迎关注,明天见。

更多更全更热门的「笔试/面试」相关资料可访问排版精美的 合集新基地 🎉🎉

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值