1.9万亿字节跳动,没钱了?

字节再融资

近期投行圈热度最高的事情,是字节跳动正在积极与相关金融机构展开洽谈,期望对其现有的 50 亿美元贷款进行再融资,期限三年。

若是再融资能成,大概率会成为中国借款人年内进行的最大规模贷款再融资交易事件。

这下可好了,一大波阴谋论出来了,有说字节跳动现金流断了,有说因为 TikTok 受美制裁,只能烧钱搞对抗...

真的入典 🤣🤣🤣

其实早在 2021 年,字节跳动就已经敲定了 50 亿美元的贷款,其中定期和循环信贷各占一半。

此次再融资更多的是为了降低融资成本、优化债务结构或满足其他财务需求,而非缺钱。

要知道字节跳动可是日均进账 20 亿人民币的超级独角兽。

到这里可能有网友会问,那字节这么有钱,为什么还要融资呢?

融资有诸多好处,其中一个比较好理解的优点,是风险控制。

例如有一个新业务要花钱,这时候首要考虑的,是项目失败后对公司的影响,而非该业务将来能够带来多少利润。此时一项较为常见的原则,是会去确保新业务所需资金来源的多元化,这样一定程度能够降低风险。每个独立项目都通过引入外部资金的方式来实现风险可控,也意味着公司相同的本金,能够支撑起更多的新业务。

贷款再融资,则可以理解为将用于「控制风险」的风险进一步降低。

贷款再融资可帮助实现债务重组(将多个高成本的短期债务转换为低成本的长期债务)、分散贷款(将单一机构贷款,分散给不同机构)和降低利率(将高利率贷款替换为低利率贷款)等等。

...

回归主题。

来一道和「字节跳动」相关的题目,也是经典的「手写数据结构」运用题。

题目描述

平台:LeetCode

题号:2558

给你一个整数数组 gifts,表示各堆礼物的数量。

每一秒,你需要执行以下操作:

  • 选择礼物数量最多的那一堆。
  • 如果不止一堆都符合礼物数量最多,从中选择任一堆即可。
  • 选中的那一堆留下平方根数量的礼物(向下取整),取走其他的礼物。

返回在 k 秒后剩下的礼物数量。

示例 1:

输入:gifts = [25,64,9,4,100], k = 4

输出:29

解释: 
按下述方式取走礼物:
- 在第一秒,选中最后一堆,剩下 10 个礼物。
- 接着第二秒选中第二堆礼物,剩下 8 个礼物。
- 然后选中第一堆礼物,剩下 5 个礼物。
- 最后,再次选中最后一堆礼物,剩下 3 个礼物。
最后剩下的礼物数量分别是 [5,8,9,4,3] ,所以,剩下礼物的总数量是 29 。

示例 2:

输入:gifts = [1,1,1,1], k = 4

输出:4

解释:
在本例中,不管选中哪一堆礼物,都必须剩下 1 个礼物。 
也就是说,你无法获取任一堆中的礼物。 
所以,剩下礼物的总数量是 4 。

提示:

基本思想

为了方便,将 gifts 记为 gs

从题面看,数组大小和执行次数范围均为 ,那么暴力做法的复杂度为 ,计算量为 ,是可以通过的。

稍有数据结构基础的同学,容易进一步联想:存在一种数据结构,能够快速查得集合最值,使复杂度降低。

该数据结构是「堆」,在某些 STL 里面又称为「优先队列」。

手写堆入门

所有高级数据结构(例如之前讲过的 [字典树 Trie] 或 [并查集],都可以使用数组进行模拟,堆自然也不例外。

「堆本质是数据集合,只不过区别于简单数组而言,其具有 查找最值特性。」

既然我们使用数组来实现堆,同时又需要实现 查找最值,一个自然而然的想法,是把集合最值放到数组的特定位置,例如数组起始位置。

开始之前,先来了解一下,堆的基本操作:

  • add:往堆中增加元素
  • peek:快速查得最值
  • pop:将最值从堆中移除

我们以小根堆为例,进行学习。

PS. 大根堆亦是同理,如果已经有写好的小根堆模板,那么将数值进行符号翻转,即可实现大根堆;或是翻转模板中的数值比较逻辑,也可将小根堆轻松切换成大根堆。

1. 堆长啥样?

堆是数组实现的,但其形态为「完全二叉树」(最多只有底下一层节点不满),目的是尽量让树平衡,降低树的高度,从而更高效的维护其性质。

虽是「完全二叉树」,但其又和另外一种特殊二叉树,二叉搜索树(BST)不同。

BST 的定义中:任意节点的左子树上的节点值均不大于该节点,任意节点的右子树上的节点值均不小于该节点。

在小根堆对应的「完全二叉树」定义中:任意节点的节点值均不大于其左右子树中的节点值。

因此将小根堆可视化后,也十分形象:小根堆的堆顶元素最小,然后从上往下,元素“依次”增大。

alt

即对于小根堆而言,每个子树的根节点,都是该子树的最小值。

2. 如何用数组进行「完全二叉树」的存储?

我们只需要将「二叉树的左右子节点关系」和「数组下标」实现某种关联即可。

我们约定,对于某个节点,若其所在数组下标为 idx,那么该节点的左子节点的数组下标为 ,该节点的右子节点的数组下标为

注意:基于此规则,我们需要调整数组下标从 1 开始进行存储。

alt
3.基本操作如何实现?

所有操作的核心最终都归结到:如何通过有限的调整,重新恢复堆所对应的完全二叉树中的节点定义。

因此可抽象出 up 操作和 down 操作,俩操作均通过递归实现:

  • up 操作是将当前节点 u 与父节点 fa = u / 2 进行比较,若发现父节点更大,则将两者进行互换,并递归处理父节点
  • down 操作是将当前节点 cur 和左右节点 l = cur * 2r = cur * 2 + 1 进行比较,若当前节点并非三者最小,则进行互换,并递归处理子节点

通过上述核心 updown 操作,以及「完全二叉树」在数组的放置规则,我们可以容易拼凑出堆的基本操作。

假定当前使用一维数组 heap 实现堆,使用变量 sz 记录当前堆的元素个数,同时该变量充当 heap 的结尾游标:

  • add:往堆中增加元素 该操作可转换为:往数组尾部增加元素( heap[sz++] = x),并从尾部开始重整堆( up(sz)
  • peek:快速查得最小值 直接范围数组首位元素,注意下标从 开始, heap[1]
  • pop:将最值从堆中移除 先通过 peek 操作记录下待移除的最小值,然后将数组的结尾元素和首位元素互换,并更新数组长度减一( heap[1] = heap[sz--]),随后从头部开始重整堆( down(1)

Java 完整模板:

int[] heap = new int[10010];
int sz = 0;
void swap(int a, int b) {
    int c = heap[a];
    heap[a] = heap[b];
    heap[b] = c;
}
void up(int u) {
    // 将「当前节点 i」与「父节点 i / 2」进行比较, 若父节点值更大, 则进行交换
    int fa = u / 2;
    if (fa != 0 && heap[fa] > heap[u]) {
        swap(fa, u);
        up(fa);
    }
}
void down(int u) {
    // 将当「前节点 cur」与「左节点 l」及「右节点 r」进行比较, 找出最小值, 若当前节点不是最小值, 则进行交换
    int cur = u;
    int l = u * 2, r = u * 2 + 1;
    if (l <= sz && heap[l] < heap[cur]) cur = l;
    if (r <= sz && heap[r] < heap[cur]) cur = r;
    if (cur != u) {
        swap(cur, u);
        down(cur);
    }
}
void add(int x) {
    heap[++sz] = x;
    up(sz);
}
int peek() {
    return heap[1];
}
int pop() {
    int ans = peek();
    heap[1] = heap[sz--];
    down(1);
    return ans;
}

C++ 完整模板:

int heap[1010];
int sz = 0;
void up(int u) {
    int fa = u / 2;
    if (fa && heap[fa] >= heap[u]) {
        swap(heap[fa], heap[u]);
        up(fa);
    }
}
void down(int u) {
    int cur = u;
    int l = cur * 2, r = cur * 2 + 1;
    if (l <= sz && heap[l] < heap[cur]) cur = l;
    if (r <= sz && heap[r] < heap[cur]) cur = r;
    if (cur != u) {
        swap(heap[cur], heap[u]);
        down(cur);
    }
}
void add(int x) {
    heap[++sz] = x;
    up(sz);
}
int peek() {
    return heap[1];
}
int poll() {
    int ans = peek();
    heap[1] = heap[sz--];
    down(1);
    return ans;
}

模板运用

利用「上述模板」以及「小根堆如何当大根堆」使用,我们可以轻松解决本题。

  1. 起始先将逐元素进行符号翻转并入堆
  2. 执行 k 次取出并重放操作(注意符号转换)
  3. 统计所有元素之和,由于此时不再需要查询最值,可通过直接扫描数组的方式(注意符号转换)

Java 代码:

class Solution {
    int[] heap = new int[10010];
    int sz = 0;
    public long pickGifts(int[] gs, int k) {
        for (int x : gs) add(-x);
        while (k-- > 0) add(-(int)Math.sqrt(-pop()));
        long ans = 0;
        while (sz != 0) ans += -heap[sz--];  // 没必要再维持堆的有序, 直接读取累加
        return ans;
    }
    void swap(int a, int b) {
        int c = heap[a];
        heap[a] = heap[b];
        heap[b] = c;
    }
    void up(int u) {
        // 将「当前节点 i」与「父节点 i / 2」进行比较, 若父节点值更大, 则进行交换
        int fa = u / 2;
        if (fa != 0 && heap[fa] > heap[u]) {
            swap(fa, u);
            up(fa);
        }
    }
    void down(int u) {
        // 将当「前节点 cur」与「左节点 l」及「右节点 r」进行比较, 找出最小值, 若当前节点不是最小值, 则进行交换
        int cur = u;
        int l = u * 2, r = u * 2 + 1;
        if (l <= sz && heap[l] < heap[cur]) cur = l;
        if (r <= sz && heap[r] < heap[cur]) cur = r;
        if (cur != u) {
            swap(cur, u);
            down(cur);
        }
    }
    void add(int x) {
        heap[++sz] = x;
        up(sz);
    }
    int peek() {
        return heap[1];
    }
    int pop() {
        int ans = peek();
        heap[1] = heap[sz--];
        down(1);
        return ans;
    }
}

C++ 代码:

class Solution {
public:
    int heap[1010];
    int sz = 0;
    long long pickGifts(vector<int>& gs, int k) {
        for (int x : gs) add(-x);
        while (k--) add(-sqrt(-poll()));
        long ans = 0;
        while (sz != 0) ans += -heap[sz--];
        return ans;
    }
    void up(int u) {
        int fa = u / 2;
        if (fa && heap[fa] >= heap[u]) {
            swap(heap[fa], heap[u]);
            up(fa);
        }
    }
    void down(int u) {
        int cur = u;
        int l = cur * 2, r = cur * 2 + 1;
        if (l <= sz && heap[l] < heap[cur]) cur = l;
        if (r <= sz && heap[r] < heap[cur]) cur = r;
        if (cur != u) {
            swap(heap[cur], heap[u]);
            down(cur);
        }
    }
    void add(int x) {
        heap[++sz] = x;
        up(sz);
    }
    int peek() {
        return heap[1];
    }
    int poll() {
        int ans = peek();
        heap[1] = heap[sz--];
        down(1);
        return ans;
    }
};
  • 时间复杂度:建堆复杂度为 ;执行 k 次操作复杂度为 ;构建答案复杂度为 。整体复杂度为
  • 空间复杂度:

最后

巨划算的 LeetCode 会员优惠通道目前仍可用 ~

使用福利优惠通道 leetcode.cn/premium/?promoChannel=acoier,年度会员 有效期额外增加两个月,季度会员 有效期额外增加两周,更有超大额专属 🧧 和实物 🎁 福利每月发放。

我是宫水三叶,每天都会分享算法知识,并和大家聊聊近期的所见所闻

欢迎关注,明天见。

更多更全更热门的「笔试/面试」相关资料可访问排版精美的 合集新基地 🎉🎉

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值