不要认为996是开玩笑

996 预防针

随着秋招进程的不断推进,有部分同学已经 OC,有部分同学还在苦苦挣扎,并不断降低自己的预期,包括在和 HR 沟通过程中,主动说出自己愿意接受加班,愿意接受 996,以此来博得企业方面的加分。

我的建议是,不要这么做。

不要以为 996 是开玩笑。如果在工位上的时间都已经是 996,那么投入到这份工作上的时间只会更多。

应届生一般经济情况不算宽裕,直接住在公司边上的概率较低(园区附近房子租金较高),通勤时间就算半个小时吧,这意味着 8 点左右必须起床,8 点 30 必须出发,为了避免迟到,实际情况还会比这个时间点更早;晚上下班算你 9 点准时走,到家 9 点 30,基本洗漱结束后差不多就是 11 点了。可以说一天下来,娱乐和休息两者不可兼得。

更残忍的是,这样的节奏一周有 6 天,一周休息两天和休息一天体验上千差万别。双休本质上是有完全放松的一天(周六),但单休你只能抓紧时间休息,而不敢安排其他活动,因为你还要考虑第二天 8 点起床的问题。

这就是 996 作为日常的真实分析,而非停留在口号上的感受,没试过的东西,永远不要觉得自己能轻易承受。

再强调一遍:不要以为 996 是开玩笑,不要轻易将"愿意 996"挂在嘴边。可能原本你能进入一个作息正常的部门,但因为你主动强调自己接受 996,HR 会因此另外安排你去比较卷的部门,毕竟你自己说的愿意熬。

996 作为了一个出现了几年,但还在不断被提起的长青词,你真的体验过吗?你的工作时间是什么?你对 996 的看法又是什么?一起评论区交流呀。

...

回归主题。

来一道和「校招」相关的算法原题。

题目描述

平台:LeetCode

题号:368

给你一个由无重复正整数组成的集合 nums,请你找出并返回其中最大的整除子集 answer,子集中每一元素对 都应当满足:answer[i] % answer[j] = 0answer[j] % answer[i] = 0

如果存在多个有效解子集,返回其中任何一个均可。

示例 1:

输入:nums = [1,2,3]

输出:[1,2]

解释:[1,3] 也会被视为正确答案。

示例 2:

输入:nums = [1,2,4,8]

输出:[1,2,4,8]

提示:

  • nums 中的所有整数互不相同

基本分析

根据题意:「对于符合要求的「整除子集」中的任意两个值,必然满足「较大数」是「较小数」的倍数。」

数据范围是 ,我们不可能采取获取所有子集,再检查子集是否合法的爆搜解法。

通常「递归」做不了,我们就往「递推」方向去考虑。

「由于存在「整除子集」中任意两个值必然存在倍数/约数关系的性质,我们自然会想到对 nums 进行排序,然后从集合 nums 中从大到小进行取数,每次取数只考虑当前决策的数是否与「整除子集」中的最后一个数成倍数关系即可。」

这时候你可能会想枚举每个数作为「整除子集」的起点,然后从前往后遍历一遍,每次都将符合「与当前子集最后一个元素成倍数」关系的数加入答案。

举个🌰,假设有原数组 [1,2,4,8],“或许”我们期望的决策过程是:

  1. 遍历到数字 1,此时「整除子集」为空,加到「整除子集」中;
  2. 遍历到数字 2,与「整除子集」的最后一个元素( 1)成倍数关系,加到「整除子集」中;
  3. 遍历到数字 4,与「整除子集」的最后一个元素( 2)成倍数关系,自然也与 2 之前的元素成倍数关系,加到「整除子集」中;
  4. 遍历到数字 8,与「整除子集」的最后一个元素( 4)成倍数关系,自然也与 4 之前的元素成倍数关系,加到「整除子集」中。

「但这样的做法只能够确保得到「合法解」,无法确保得到的是「最长整除子集」」

当时担心本题数据太弱,上述错误的解法也能够通过,所以还特意实现了一下,还好被卡住了(🤣

同时也得到这个反例:[9,18,54,90,108,180,360,540,720],如果按照我们上述逻辑,我们得到的是 [9,18,54,108,540] 答案(长度为 5),但事实上存在更长的「整除子集」: [9,18,90,180,360,720](长度为 6)。

「其本质是因为同一个数的不同倍数之间不存在必然的「倍数/约数关系」,而只存在「具有公约数」的性质,这会导致我们「模拟解法」错过最优解。」

比如上述 🌰,54 & 9018 存在倍数关系,但两者本身不存在倍数关系。

因此当我们决策到某一个数 nums[i] 时(nums 已排好序),我们无法直接将 nums[i] 直接接在符合「约数关系」的、最靠近位置 i 的数后面,而是要「检查位置 i 前面的所有符合「约数关系」的位置,找一个已经形成「整除子集」长度最大的数」

「换句话说,当我们对 nums 排好序并从前往后处理时,在处理到 nums[i] 时,我们希望知道位置 i 之前的下标已经形成的「整除子集」长度是多少,然后从中选一个最长的「整除子集」,将 nums[i] 接在后面(前提是符合「倍数关系」)。」

动态规划

基于上述分析,我们不难发现这其实是一个序列 DP 问题:「某个状态的转移依赖于与前一个状态的关系。即 nums[i] 能否接在 nums[j] 后面,取决于是否满足 nums[i] % nums[j] == 0 条件。」

可看做是「最长上升子序列」问题的变形题。

「定义 为考虑前 i 个数字,且以第 i 个数为结尾的最长「整除子集」长度。」

我们不失一般性的考虑任意位置 i,存在两种情况:

  • 如果在 i 之前找不到符合条件 nums[i] % nums[j] == 0 的位置 j,那么 nums[i] 不能接在位置 i 之前的任何数的后面,只能自己独立作为「整除子集」的第一个数,此时状态转移方程为 ;
  • 如果在 i 之前能够找到符合条件的位置 j,则取所有符合条件的 f[j] 的最大值,代表如果希望找到以 nums[i] 为结尾的最长「整除子集」,需要将 nums[i] 接到符合条件的最长的 nums[j] 后面,此时状态转移方程为 。

同时由于我们需要输出具体方案,需要额外使用 g[] 数组来记录每个状态是由哪个状态转移而来。

「定义 为记录 是由哪个下标的状态转移而来,如果 , 则有 。」

对于求方案数的题目,多开一个数组来记录状态从何转移而来是最常见的手段。

当我们求得所有的状态值之后,可以对 f[] 数组进行遍历,取得具体的最长「整除子集」长度和对应下标,然后使用 g[] 数组进行回溯,取得答案。

Java 代码:

class Solution {
    public List<Integer> largestDivisibleSubset(int[] nums) {
        Arrays.sort(nums);
        int n = nums.length;
        int[] f = new int[n], g = new int[n];
        for (int i = 0; i < n; i++) {
            // 至少包含自身一个数,因此起始长度为 1,由自身转移而来
            int len = 1, prev = i;
            for (int j = 0; j < i; j++) {
                if (nums[i] % nums[j] == 0) {
                    // 如果能接在更长的序列后面,则更新「最大长度」&「从何转移而来」
                    if (f[j] + 1 > len) {
                        len = f[j] + 1;
                        prev = j;
                    }
                }
            }
            // 记录「最终长度」&「从何转移而来」
            f[i] = len; g[i] = prev;
        }
        // 遍历所有的 f[i],取得「最大长度」和「对应下标」
        int max = -1, idx = -1;
        for (int i = 0; i < n; i++) {
            if (f[i] > max) {
                idx = i;
                max = f[i];
            }
        }
        // 使用 g[] 数组回溯出具体方案
        List<Integer> ans = new ArrayList<>();
        while (ans.size() != max) {
            ans.add(nums[idx]);
            idx = g[idx];
        }
        return ans;
    }
}

C++ 代码:

class Solution {
public:
    vector<intlargestDivisibleSubset(vector<int>& nums) {
        sort(nums.begin(), nums.end());
        int n = nums.size();
        vector<intf(n, 0)g(n, 0);
        for (int i = 0; i < n; i++) {
            int len = 1, prev = i;
            for (int j = 0; j < i; j++) {
                if (nums[i] % nums[j] == 0) {
                    if (f[j] + 1 > len) {
                        len = f[j] + 1;
                        prev = j;
                    }
                }
            }
            f[i] = len; g[i] = prev;
        }
        int max = -1, idx = -1;
        for (int i = 0; i < n; i++) {
            if (f[i] > max) {
                max = f[i];
                idx = i;
            }
        }
        vector<int> ans;
        while (ans.size() != max) {
            ans.push_back(nums[idx]);
            idx = g[idx];
        }
        return ans;
    }
};

Python 代码:

class Solution:
    def largestDivisibleSubset(self, nums: List[int]) -> List[int]:
        nums.sort()
        n = len(nums)
        f, g = [0] * n, [0] * n
        for i in range(n):
            lenv, prev = 1, i
            for j in range(i):
                if nums[i] % nums[j] == 0:
                    if f[j] + 1 > lenv:
                        lenv, prev = f[j] + 1, j
            f[i], g[i] = lenv, prev
        maxv, idx = -1-1
        for i in range(n):
            if f[i] > maxv:
                maxv, idx = f[i], i
        ans = []
        while len(ans) != maxv:
            ans.append(nums[idx])
            idx = g[idx]
        return ans
  • 时间复杂度:
  • 空间复杂度:

证明

「之所以上述解法能够成立,问题能够转化为「最长上升子序列(LIS)」问题进行求解,本质是利用了「全序关系」中的「可传递性」。」

在 LIS 问题中,我们是利用了「关系运算符 」的传递性,因此当我们某个数 a 能够接在 b 后面,只需要确保 成立,即可确保 a 大于等于 b 之前的所有值。

那么同理,如果我们想要上述解法成立,我们还需要证明如下内容:

「倍数/约数关系」具有传递性

由于我们将 nums[i] 往某个数字后面接时(假设为 nums[j]),只检查了其与 nums[j] 的关系,并没有去检查 nums[i]nums[j] 之前的数值是否具有「倍数/约数关系」。

换句话说,我们只确保了最终答案 [a1, a2, a3, ..., an] 相邻两数值之间具有「倍数/约数关系」,并不明确任意两值之间具有「倍数/约数关系」。

因此需要证得由 和 ,可推导出 的传递性:

由 可得 由 可得

最终有 ,由于 和 都是整数,因此可得 。

得证「倍数/约数关系」具有传递性。

最后

巨划算的 LeetCode 会员优惠通道目前仍可用 ~

使用福利优惠通道 leetcode.cn/premium/?promoChannel=acoier,年度会员 有效期额外增加两个月,季度会员 有效期额外增加两周,更有超大额专属 🧧 和实物 🎁 福利每月发放。

我是宫水三叶,每天都会分享算法知识,并和大家聊聊近期的所见所闻

欢迎关注,明天见。

更多更全更热门的「笔试/面试」相关资料可访问排版精美的 合集新基地 🎉🎉

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值