强制下班
Manus 的事儿先往后稍稍,今天先聊一个这两天简中网最热的事儿,企业强制下班。
率先打响"强制下班"头炮的企业,是大疆。
据在大疆的读者爆料,临近晚上 9 点,深圳大疆总部就实行「赶人策略」,先是主管发挥表率作用,提前拎包走人,并到每一排工位上喊"下班了";几分钟后,如果还有人在工位上,项目大主管就出场了,再赶一遍;9 点过后,HRBP 背着"必须清场"的 KPI,开始扫雷式的赶人。
至于上海区域的大疆,更加直接,晚上 9 点准时关灯。
这项"不准加班"的行动,从 2 月 27 日开始,目前已执行超过一周。员工从刚开始的半信半疑,到现在的真的接受。
但真正将"强制下班"的风头推向高潮的,是今天(3 月 10 日)美的被曝强制 18 点 20 分下班。
相比大疆,美的的提倡甚至还更具有"指向性",除了 18:20 不允许有人在公司加班以外,还明确禁止员工就餐后再返回工位继续加班。
不管它们执行"不准加班"的提倡,是真为了帮企业摘掉"内卷"、"加班"的标签,还是为了应对"欧盟劳工标准",避免海外业务受影响。
至少目前从结果来看,是毫无疑问的好事儿。
虽然政策很好,但我们见过太多"好事变味"的案例了。如果只控制员工离开公司的时间,而不控制员工的工作量和考核匹配,最终的结果可能只会变成员工被迫"居家加班",希望这两家企业持续执行 WLB(工作和生活平衡)为原则的新政策。
对此,大家怎么看?你们看好"不准加班"风气在国内继续蔓延吗?
...
回归主题。
来一道和「字节跳动」相关的算法题。
题目描述
平台:LeetCode
题号:301
给你一个由若干括号和字母组成的字符串 s
,删除最小数量的无效括号,使得输入的字符串有效。
返回所有可能的结果,答案可以按任意顺序返回。
示例 1:
输入: "()())()"
输出: ["()()()", "(())()"]
示例 2:
输入: "(a)())()"
输出: ["(a)()()", "(a())()"]
示例 3:
输入: ")("
输出: [""]
提示:
-
-
s
由小写英文字母以及括号'('
和')'
组成 -
s
中至多含20
个括号
搜索 + 剪枝
由于题目要求我们将所有(最长)合法方案输出,因此不可能有别的优化,只能进行「爆搜」。
我们可以使用 DFS
实现回溯搜索。
基本思路:
我们知道所有的合法方案,必然有左括号的数量与右括号数量相等。
首先我们令左括号的得分为 ;右括号的得分为 。则会有如下性质:
-
对于一个合法的方案而言,必然有最终得分为 ; -
搜索过程中不会出现得分值为 「负数」 的情况(当且仅当子串中某个前缀中「右括号的数量」大于「左括号的数量」时,会出现负数,此时不是合法方案)。
同时我们可以预处理出「爆搜」过程的最大得分: max = min(左括号的数量, 右括号的数量)
「PS.「爆搜」过程的最大得分必然是:合法左括号先全部出现在左边,之后使用最多的合法右括号进行匹配。」
枚举过程中出现字符分三种情况:
-
左括号:如果增加当前 (
后,仍为合法子串(即 ) 时,我们可以选择添加该左括号,也能选择不添加; -
右括号:如果增加当前 )
后,仍为合法子串(即 ) 时,我们可以选择添加该右括号,也能选择不添加; -
普通字符:直接添加。
使用 Set
进行方案去重,
记录「爆搜」过程中的最大子串,然后只保留长度等于
的子串。
Java 代码:
class Solution {
Set<String> set = new HashSet<>();
int n, max, len;
String s;
public List<String> removeInvalidParentheses(String _s) {
s = _s;
n = s.length();
int l = 0, r = 0;
for (char c : s.toCharArray()) {
if (c == '(') l++;
else if (c == ')') r++;
}
max = Math.min(l, r);
dfs(0, "", 0);
return new ArrayList<>(set);
}
void dfs(int u, String cur, int score) {
if (score < 0 || score > max) return ;
if (u == n) {
if (score == 0 && cur.length() >= len) {
if (cur.length() > len) set.clear();
len = cur.length();
set.add(cur);
}
return ;
}
char c = s.charAt(u);
if (c == '(') {
dfs(u + 1, cur + String.valueOf(c), score + 1);
dfs(u + 1, cur, score);
} else if (c == ')') {
dfs(u + 1, cur + String.valueOf(c), score - 1);
dfs(u + 1, cur, score);
} else {
dfs(u + 1, cur + String.valueOf(c), score);
}
}
}
C++ 代码:
class Solution {
public:
unordered_set<string> resSet;
int n, maxv, lenv;
string s;
vector<string> removeInvalidParentheses(string _s) {
s = _s;
n = s.size();
int l = 0, r = 0;
for (char c : s) {
if (c == '(') l++;
else if (c == ')') r++;
}
maxv = min(l, r);
lenv = 0;
resSet.clear();
dfs(0, "", 0);
return vector<string>(resSet.begin(), resSet.end());
}
void dfs(int u, string cur, int score) {
if (score < 0 || score > maxv) return;
if (u == n) {
if (score == 0 && cur.length() >= lenv) {
if (cur.length() > lenv) resSet.clear();
lenv = cur.length();
resSet.insert(cur);
}
return;
}
char c = s[u];
if (c == '(') {
dfs(u + 1, cur + c, score + 1);
dfs(u + 1, cur, score);
} else if (c == ')') {
dfs(u + 1, cur + c, score - 1);
dfs(u + 1, cur, score);
} else {
dfs(u + 1, cur + c, score);
}
}
};
Python 代码:
class Solution:
def removeInvalidParentheses(self, s: str) -> List[str]:
self.rset = set()
self.n = len(s)
l = r = 0
for c in s:
if c == '(':
l += 1
elif c == ')':
r += 1
self.maxv = min(l, r)
self.lenv = 0
self.s = s
def dfs(u, cur, score):
if score < 0 or score > self.maxv:
return
if u == self.n:
if score == 0 and len(cur) >= self.lenv:
if len(cur) > self.lenv:
self.rset.clear()
self.lenv = len(cur)
self.rset.add(cur)
return
c = self.s[u]
if c == '(':
dfs(u + 1, cur + c, score + 1)
dfs(u + 1, cur, score)
elif c == ')':
dfs(u + 1, cur + c, score - 1)
dfs(u + 1, cur, score)
else:
dfs(u + 1, cur + c, score)
dfs(0, "", 0)
return list(self.rset) if self.rset else [""]
-
时间复杂度:预处理 的复杂度为 ;不考虑 带来的剪枝效果,最坏情况下,每个位置都有两种选择,搜索所有方案的复杂度为 ;同时搜索过程中会产生的新字符串(最终递归树中叶子节点的字符串长度最大为 ,使用 StringBuilder
也是同理),复杂度为 。整体复杂度为 -
空间复杂度:最大合法方案数与字符串长度呈线性关系。复杂度为
搜索 + 剪枝
在解法一,我们是在搜索过程中去更新最后的 。
但事实上,我们可以通过预处理,得到最后的「应该删除的左括号数量」和「应该删掉的右括号数量」,来直接得到最终的 。
因此在此基础上,我们可以考虑多增加一层剪枝。
Java 代码:
class Solution {
Set<String> set = new HashSet<>();
int n, max, len;
String s;
public List<String> removeInvalidParentheses(String _s) {
s = _s;
n = s.length();
int l = 0, r = 0;
for (char c : s.toCharArray()) {
if (c == '(') {
l++;
} else if (c == ')') {
if (l != 0) l--;
else r++;
}
}
len = n - l - r;
int c1 = 0, c2 = 0;
for (char c : s.toCharArray()) {
if (c == '(') c1++;
else if (c == ')') c2++;
}
max = Math.min(c1, c2);
dfs(0, "", l, r, 0);
return new ArrayList<>(set);
}
void dfs(int u, String cur, int l, int r, int score) {
if (l < 0 || r < 0 || score < 0 || score > max) return ;
if (l == 0 && r == 0) {
if (cur.length() == len) set.add(cur);
}
if (u == n) return ;
char c = s.charAt(u);
if (c == '(') {
dfs(u + 1, cur + String.valueOf(c), l, r, score + 1);
dfs(u + 1, cur, l - 1, r, score);
} else if (c == ')') {
dfs(u + 1, cur + String.valueOf(c), l, r, score - 1);
dfs(u + 1, cur, l, r - 1, score);
} else {
dfs(u + 1, cur + String.valueOf(c), l, r, score);
}
}
}
C++ 代码:
class Solution {
public:
unordered_set<string> resSet;
int n, maxv, lenv;
string s;
vector<string> removeInvalidParentheses(string _s) {
s = _s;
n = s.size();
int l = 0, r = 0;
for (char c : s) {
if (c == '(') {
l++;
} else if (c == ')') {
if (l > 0) l--;
else r++;
}
}
lenv = n - l - r;
int c1 = 0, c2 = 0;
for (char c : s) {
if (c == '(') c1++;
else if (c == ')') c2++;
}
maxv = min(c1, c2);
dfs(0, "", l, r, 0);
return vector<string>(resSet.begin(), resSet.end());
}
void dfs(int u, string cur, int l, int r, int score) {
if (l < 0 || r < 0 || score < 0 || score > maxv) return;
if (l == 0 && r == 0) {
if (cur.length() == lenv) resSet.insert(cur);
}
if (u == n) return;
char c = s[u];
if (c == '(') {
dfs(u + 1, cur + c, l, r, score + 1);
dfs(u + 1, cur, l - 1, r, score);
} else if (c == ')') {
dfs(u + 1, cur + c, l, r, score - 1);
dfs(u + 1, cur, l, r - 1, score);
} else {
dfs(u + 1, cur + c, l, r, score);
}
}
};
Python 代码:
class Solution:
def removeInvalidParentheses(self, s: str) -> List[str]:
self.rset = set()
self.n = len(s)
l = r = 0
for c in s:
if c == '(':
l += 1
elif c == ')':
if l > 0:
l -= 1
else:
r += 1
self.lenv = self.n - l - r
c1 = sum(1 for char in s if char == '(')
c2 = sum(1 for char in s if char == ')')
self.maxv = min(c1, c2)
self.s = s
def dfs(u, cur, l, r, score):
if l < 0 or r < 0 or score < 0 or score > self.maxv:
return
if l == 0 and r == 0:
if len(cur) == self.lenv:
self.rset.add(cur)
if u == self.n:
return
c = self.s[u]
if c == '(':
dfs(u + 1, cur + c, l, r, score + 1)
dfs(u + 1, cur, l - 1, r, score)
elif c == ')':
dfs(u + 1, cur + c, l, r, score - 1)
dfs(u + 1, cur, l, r - 1, score)
else:
dfs(u + 1, cur + c, l, r, score)
dfs(0, "", l, r, 0)
return list(self.rset) if self.rset else [""]
-
时间复杂度:预处理 和 的复杂度为 ;不考虑 带来的剪枝效果,最坏情况下,每个位置都有两种选择,搜索所有方案的复杂度为 ;同时搜索过程中会产生的新字符串(最终递归树中叶子节点的字符串长度最大为 ,使用 StringBuilder
也是同理),复杂度为 。整体复杂度为 -
空间复杂度:最大合法方案数与字符串长度呈线性关系。复杂度为
最后
巨划算的 LeetCode 会员优惠通道目前仍可用 ~
使用福利优惠通道 leetcode.cn/premium/?promoChannel=acoier,年度会员 有效期额外增加两个月,季度会员 有效期额外增加两周,更有超大额专属 🧧 和实物 🎁 福利每月发放。
我是宫水三叶,每天都会分享算法知识,并和大家聊聊近期的所见所闻。
欢迎关注,明天见。
更多更全更热门的「笔试/面试」相关资料可访问排版精美的 合集新基地 🎉🎉