matlab 连续势函数,任意阶参数连续的形状可调过渡曲线

定理2   由式(14)给出的势函数${f_k}(t) $具有下列性质:

1) 若用${f_k}\left( {t;\lambda } \right) $表示取参数为$k $和$ \lambda $时的势函数,则有$ {f_k}\left( {t;\frac{{3k + 4}}{{4k + 6}}} \right) = {f_{k - 1}}(t;1)$。

2) 端点性。即${f_k}\left( 0 \right) = 1, {f_k}\left( 1 \right) = 0 $。

3) 导数性。对于一般的参数$ \lambda $,有

$

f_k^{\left( i \right)}\left( 0 \right) = f_k^{\left( i \right)}\left( 1 \right) = 0

$

式中,$ i = 1, 2, \ldots , k$;特别地,当参数$ \lambda = 1$时,有$ i = 1, 2, \ldots , k + 1$。

4) 对称性。即${f_k}\left( t \right) + {f_k}\left( {1 - t} \right) = 1$。

5) 中点性。即$ {f_k}\left( {0.5} \right) = 0.5$。

6) 单调性。对于固定的自然数$k $,当参数$ \lambda \in \left[ { - \frac{k}{2}, 1} \right]$时,固定$\lambda $的值,${f_k}(t) $关于变量$t{\rm{ }}(t \in \left[ {0, 1} \right]) $单调递减;对于固定的自然数$k $,当变量$ t \in \left[ {0, \frac{1}{2}} \right]$时,固定$ t$的值,${f_k}(t) $关于参数$ \lambda $单调递增;当变量$t \in \left[ {\frac{1}{2}, 1} \right] $时,固定$t $的值,${f_k}(t) $关于参数$ \lambda $单调递减。

7) 有界性。即$\forall t \in \left[ {0, 1} \right] $,有$0 \le {f_k}\left( t \right) \le 1 $。

8) 凹凸性。当$ \lambda \in \left[ {\frac{2}{3} - \frac{k}{6}, 1} \right]$时,在参数区间$ t \in \left[ {0, 1} \right]$上,势函数${f_k}(t) $的图形只有唯一拐点$\left( {\frac{1}{2}, \frac{1}{2}} \right) $,经过该点时,${f_k}(t) $的图形从凸曲线变为凹曲线。

证明性质1):由式(14)可知

$

\begin{array}{*{20}{c}}

{{f_{k - 1}}\left( {t;1} \right) = \sum\limits_{i = 0}^{k - 1} {B_i^{2k + 1}\left( t \right)} + B_k^{2k + 1}\left( t \right) = }\\

{\sum\limits_{i = 0}^k {B_i^{2k + 1}\left( t \right)} }

\end{array}

$

(15)

对式(15)右端的Bernstein基函数进行升阶并整理,可得

$

\begin{array}{*{20}{c}}

{{f_{k - 1}}\left( {t;1} \right) = }\\

{\sum\limits_{i = 0}^k {\left[ {\left( {1 - \frac{i}{{2k + 2}}} \right)B_i^{2k + 2}\left( t \right) + \frac{{i + 1}}{{2k + 2}}B_i^{2k + 2}\left( t \right)} \right]} = }\\

{\sum\limits_{i = 0}^k {\frac{{2k + 2 - i}}{{2k + 2}}B_i^{2k + 2}\left( t \right)} + \sum\limits_{i = 1}^{k + 1} {\frac{i}{{2k + 2}}B_i^{2k + 2}\left( t \right)} = }\\

{B_0^{2k + 2}\left( t \right) + \sum\limits_{i = 1}^k {B_i^{2k + 2}\left( t \right)} + \frac{1}{2}B_{k + 1}^{2k + 2}\left( t \right) = }\\

{\sum\limits_{i = 0}^k {B_i^{2k + 2}\left( t \right)} + \frac{1}{2}B_{k + 1}^{2k + 2}\left( t \right)}

\end{array}

$

(16)

对式(16)所得结果中的Bernstein基函数再次进行升阶并整理,可得

$

\begin{array}{*{20}{c}}

{{f_{k - 1}}\left( {t;1} \right) = }\\

{\sum\limits_{i = 0}^k {\left[ {\left( {1 - \frac{i}{{2k + 3}}} \right)B_i^{2k + 3}\left( t \right) + \frac{{i + 1}}{{2k + 3}}B_{i + 1}^{2k + 3}\left( t \right)} \right]} + }\\

{\frac{1}{2}\left[ {\left( {1 - \frac{{k + 1}}{{2k + 3}}} \right)B_{k + 1}^{2k + 3}\left( t \right) + \frac{{k + 2}}{{2k + 3}}B_{k + 2}^{2k + 3}\left( t \right)} \right] = }\\

{\sum\limits_{i = 0}^k {\frac{{2k + 3 - i}}{{2k + 3}}B_i^{2k + 3}\left( t \right)} + \sum\limits_{i = 1}^{k + 1} {\frac{i}{{2k + 3}}B_i^{2k + 3}\left( t \right)} + }\\

{\frac{{k + 2}}{{4k + 6}}B_{k + 1}^{2k + 3}\left( t \right) + \frac{{k + 2}}{{4k + 6}}B_{k + 2}^{2k + 3}\left( t \right) = }\\

{B_0^{2k + 3}\left( t \right) + \sum\limits_{i = 1}^k {B_i^{2k + 3}\left( t \right)} + \frac{{k + 1}}{{2k + 3}}B_{k + 1}^{2k + 3}\left( t \right) + }\\

{\frac{{k + 2}}{{4k + 6}}B_{k + 1}^{2k + 3}\left( t \right) + \frac{{k + 2}}{{4k + 6}}B_{k + 2}^{2k + 3}\left( t \right) = }\\

{\sum\limits_{i = 0}^k {\frac{i}{{2k + 3}}B_i^{2k + 3}\left( t \right)} + \frac{{3k + 4}}{{4k + 6}}B_{k + 1}^{2k + 3}\left( t \right) + }\\

{\frac{{k + 2}}{{4k + 6}}B_{k + 2}^{2k + 3}\left( t \right)}

\end{array}

$

(17)

对照式(14)可知,式(17)所得结果即为在${f_k}(t) $的表达式中取$ \lambda = \frac{{3k + 4}}{{4k + 6}}$时的结果。实际上,对照2.4节所给$k $取0、1、2、3、4时${f_k}(t) $的表达式,可以验证该性质的正确性。

证明性质2)4):由2.1-2.3节的分析易知,端点性、对称性显然成立。

证明性质3):由2.1-2.3节的分析易知,对于一般的参数$ \lambda $,导数性显然成立。又由式(14)可知,当$ \lambda = 1$时

$

{f_k}\left( t \right) = \sum\limits_{i = 0}^{k + 1} {B_i^{2k + 3}\left( t \right)}

$

则有

$

\frac{{{{\rm{d}}^{k + 1}}{f_k}\left( t \right)}}{{{\rm{d}}{t^{k + 1}}}} = \sum\limits_{i = 0}^{k + 1} {\frac{{{{\rm{d}}^{k + 1}}B_i^{2k + 3}\left( t \right)}}{{{\rm{d}}{t^{k + 1}}}}}

$

(18)

由式(2)(18)可知

$

\begin{array}{*{20}{c}}

{\frac{{{{\rm{d}}^{k + 1}}{f_k}\left( t \right)}}{{{\rm{d}}{t^{k + 1}}}}\left| {_{t = 0}} \right. = \frac{{\left( {2k + 3} \right)!}}{{\left( {k + 2} \right)!}}\sum\limits_{i = 0}^{k + 1} {{{\left( { - 1} \right)}^{k + 1 - i}}C_{k + 1}^i} = }\\

{\frac{{\left( {2k + 3} \right)!}}{{\left( {k + 2} \right)!}}\sum\limits_{i = 0}^{k + 1} {C_{k + 1}^i \cdot {1^i} \cdot {{\left( { - 1} \right)}^{k + 1 - i}}} = }\\

{\frac{{\left( {2k + 3} \right)!}}{{\left( {k + 2} \right)!}}{{\left[ {1 + \left( { - 1} \right)} \right]}^{k + 1}} = 0}

\end{array}

$

由式(3)(18)可知

$

\frac{{{{\rm{d}}^{k + 1}}{f_k}\left( t \right)}}{{{\rm{d}}{t^{k + 1}}}}\left| {_{t = 1}} \right. = \sum\limits_{i = 0}^{k + 1} {\frac{{{{\rm{d}}^{k + 1}}B_i^{2k + 3}\left( t \right)}}{{{\rm{d}}{t^{k + 1}}}}\left| {_{t = 1}} \right.} = \sum\limits_{i = 0}^{k + 1} 0 = 0

$

因此$ \lambda = 1$时的结论成立。

证明性质5):由对称性知

$

{f_k}\left( {0.5} \right) + {f_k}\left( {0.5} \right) = 1 \Rightarrow {f_k}\left( {0.5} \right) = 0.5

$

证明性质6):将Bernstein基函数的求导公式作用于势函数${f_k}(t) $的表达式(14)并进行整理,可得

$

{{f'}_k}\left( t \right) = C_{2k + 3}^{k + 1}{t^k}{\left( {1 - t} \right)^k}g\left( t \right)

$

(19)

$

\begin{array}{*{20}{c}}

{g\left( t \right) = \left( {4k\lambda + 6\lambda - 3k - 4} \right) \times }\\

{\left( {{t^2} - t} \right) + \left( {\lambda - 1} \right)\left( {k + 1} \right)}

\end{array}

$

由式(19)可知,在区间$ t \in \left[ {0, 1} \right]$上,$ {{f'}_k}\left( t \right)$的符号取决于$ g\left( t \right)$的符号,由于当$ - \frac{k}{2} \le \lambda \le 1$时,有

$

\left\{ \begin{array}{l}

g\left( 0 \right) = g\left( 1 \right) = \left( {\lambda - 1} \right)\left( {\lambda + 1} \right) \le 0\\

g\left( {\frac{1}{2}} \right) = - \frac{1}{4}\left( {k + 2\lambda } \right) \le 0

\end{array} \right.

$

故此时$ \forall t \in \left[ {0, 1} \right]$,都有$ g\left( t \right)$≤0,进而$ {{f'}_k}\left( t \right)$≤0,因此${f_k}(t) $关于变量$ t \in \left[ {0, 1} \right]$单调递减。

另外,由式(14)可知

$

\begin{array}{*{20}{c}}

{\frac{{{\rm{d}}{f_k}\left( t \right)}}{{{\rm{d}}\lambda }} = B_{k + 1}^{2k + 3}\left( t \right) - B_{k + 2}^{2k + 3}\left( t \right) = }\\

{C_{2j + 3}^{k + 1}{{\left[ {t\left( {1 - t} \right)} \right]}^{k + 1}}\left( {1 - 2t} \right)}

\end{array}

$

当$ t \in \left[ {0, \frac{1}{2}} \right]$时,$ \frac{{{\rm{d}}{f_k}(t)}}{{{\rm{d}}\lambda }} \ge 0$,表明${f_k}(t) $关于$\lambda $单调递增,而当$t \in \left[ {\frac{1}{2}, 1} \right] $时,$ \frac{{{\rm{d}}{f_k}(t)}}{{{\rm{d}}\lambda }} \le 0$,表明${f_k}(t) $关于$\lambda $单调递减。

证明性质7):由${f_k}(t) $的端点性,以及${f_k}(t) $关于$t $的单调性,即得有界性。

证明性质8):在式(19)所得结果的基础上再求一次导数并进行整理,得到

$

\begin{array}{*{20}{c}}

{{{f''}_k}\left( t \right) = C_{2k + 3}^{k + 1}{t^{k - 1}}{{\left( {1 - t} \right)}^{k + 1}} \times }\\

{\left( {k + 1} \right)\left( {1 - 2t} \right)h\left( t \right)}

\end{array}

$

(20)

$

h\left( t \right) = \left( {4k\lambda + 6\lambda - 3k - 4} \right)\left( {{t^2} - t} \right) + \left( {\lambda - 1} \right)k

$

由于当$\frac{2}{3} - \frac{k}{6} \le \lambda \le 1 $时,有

$

\left\{ \begin{array}{l}

h\left( 0 \right) = h\left( 1 \right) = \left( {\lambda - 1} \right)k \le 0\\

h\left( {\frac{1}{2}} \right) = 1 - \frac{1}{4}k - \frac{3}{2}\lambda \le 0

\end{array} \right.

$

故此时$h\left( t \right) $在区间$t \in \left( {0, 1} \right) $内不存在零点,再结合式(20)可知此时$ {{f''}_k}\left( t \right)$在区间$t \in \left( {0, 1} \right) $内只存在唯一的零点,即$t = \frac{1}{2} $,因此点$\left( {\frac{1}{2}, \frac{1}{2}} \right) $是势函数${f_k}(t) $的图形上唯一可能的拐点。至于该点是否为真正的拐点,以及当该点为拐点时,该点左右两侧势函数${f_k}(t) $图形的凹凸性情况,可直接由势函数的图形给出答案。

$ \lambda $均在区间$ \left[ {\frac{2}{3} - \frac{k}{6}, 1} \right]$内取值。从图中可以直观看出,点$\left( {\frac{1}{2}, \frac{1}{2}} \right) $是相应势函数${f_k}(t) $图形上的拐点,在该点左侧,函数图形为凸曲线,在该点右侧,函数图形为凹曲线。

$ \lambda $均在区间$ \left[ { - \frac{k}{2}, \frac{2}{3} - \frac{k}{6}} \right)$内取值。从图中可以较明显地看出,点$\left( {\frac{1}{2}, \frac{1}{2}} \right) $并不是相应势函数${f_k}(t) $图形上唯一的拐点。

从$\lambda \in \left[ { - \frac{k}{2}, 1} \right]$,势函数${f_k}(t) $都具备端点性、中点性、单调性、有界性。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值