tensorflow 自定义梯度_基于TensorFlow中自定义梯度的2种方式

本文介绍了在深度学习中自定义梯度的重要性,并详细解析了TensorFlow中两种自定义梯度的方法:1) 重写梯度法,通过`tf.RegisterGradient()`和`gradient_override_map`实现;2) stop_gradient法,利用`tf.stop_gradient()`函数改变反向传播路径。通过实例展示了这两种方法的使用,帮助理解如何在特定场景下自定义梯度传播过程。
摘要由CSDN通过智能技术生成

前言

在深度学习中,有时候我们需要对某些节点的梯度进行一些定制,特别是该节点操作不可导(比如阶梯除法如

263fb189d7b3ad8ef125e19bb918e9c0.png ),如果实在需要对这个节点进行操作,而且希望其可以反向传播,那么就需要对其进行自定义反向传播时的梯度。在有些场景,如[2]中介绍到的梯度反转(gradient inverse)中,就必须在某层节点对反向传播的梯度进行反转,也就是需要更改正常的梯度传播过程,如下图的

9cfd7ac0685e749b251128773390e236.png 所示。

5605788ca316cd8174ce5b5cb338880e.png

在tensorflow中有若干可以实现定制梯度的方法,这里介绍两种。

1. 重写梯度法

重写梯度法指的是通过tensorflow自带的机制,将某个节点的梯度重写(override),这种方法的适用性最广。我们这里举个例子[3].

符号函数的前向传播采用的是阶跃函数y=sign(x) y = \rm{sign}(x)y=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值