tensorflow中的梯度

一、梯度裁剪

1.1 根据value值裁剪.

optimizer = tf.train.AdamOptimizer(learning_rate=lr)
gvs = optimizer.compute_gradients(cost)
capped_gvs = [(tf.clip_by_value(grad, clip_value_min=-1, clip_value_max=1), var) for grad, var in gvs]
train_op = optimizer.apply_gradients(capped_gvs)

1.2 根据梯度范式裁剪.

二、检查哪些变量无梯度

变量无梯度,说明不更新,如果需要更新,那么就有问题。

2.1 通过代码检查

gradients = tf.gradients(total_loss, tf.trainable_variables())

for var, grad in zip(tf.trainable_variables(), ):
	if grad is None:
		print(var)

这样输出的变量即为不更新的。

2.2 通过tensorboard检查

三、获取变量梯度值

3.1 获取某个命名空间下的全部梯度值

gradients = tf.gradients(total_loss, tf.trainable_variables(scope="word_bow_loss"))

3.2 获取某个集合下的全部梯度值

tf.add_to_collection("check_g_v", common_probs)
tf.add_to_collection("check_g_v", copy_probs)
tf.add_to_collection("check_g_v", entity_probs)

gradients = tf.gradients(total_loss, tf.get_collection(check_g_v))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值