matlab 中克罗内克积,克罗内克积

[编辑]

什么是克罗内克积

克罗内克积是指两个任意大小的矩阵间的运算,表示为

2fe32a9c6b91d6a50b146dd7dd2c8b45.png。克罗内克积是张量积的特殊形式,以德国数学家利奥波德•克罗内克命名。

[编辑]

克罗内克积的定义

如果A是一个m×n的矩阵,而B是一个p×q的矩阵,克罗内克积

2d62525a83cf73e71f91946cc5bf7af5.png则是一个mp×nq的分块矩阵

d22ec058221fca5ac4dc315aaddb3df4.png

更具体地可表示为

c3cc887c4a1c9925bf5b37b32adbbc30.png

[编辑]

克罗内克积的特性

[编辑]

双线性和结合律

克罗内克积是张量积的特殊形式,因此满足双线性映射|双线性与结合律:

43f9518fb1239b2d0a1827f2528f68f3.png189683bf71a5f52b3781b92348583519.pnga4e9fae91301703b1e96a995422565cf.png7e5381d98cd14ac5e4b1312d6c8eeb41.png

其中,A,B和C是矩阵,而k是常量。

克罗内克积不符合交换律:

通常,A

2fe32a9c6b91d6a50b146dd7dd2c8b45.pngB不同于B

2fe32a9c6b91d6a50b146dd7dd2c8b45.pngA。

A

2fe32a9c6b91d6a50b146dd7dd2c8b45.pngB和B

2fe32a9c6b91d6a50b146dd7dd2c8b45.pngA是排列等价的,也就是说,存在排列矩阵P和Q,使得:

6db03443e92a1f8b56a8217708e3fd13.png

如果A和B是方块矩阵,则A

2fe32a9c6b91d6a50b146dd7dd2c8b45.pngB和B

2fe32a9c6b91d6a50b146dd7dd2c8b45.pngA甚至是排列相似矩阵|相似的,也就是说,我们可以取P=QT。

[编辑]

混合乘积性质

如果A、B、C和D是四个矩阵,且矩阵乘积AC和BD存在,那么:

40019b1b6961a36d170893bbaef702bb.png

这个性质称为“混合乘积性质”,因为它混合了通常的矩阵乘积和克罗内克积。于是可以推出,A

b04c82bba3b59803e1690d0d919ece92.pngB是可逆矩阵|可逆的当且仅当A和B是可逆的,其逆矩阵为:

7b3d5396b28c66c32d2c2d5ea589411e.png

[编辑]

克罗内克和

如果A是n×n矩阵,B是m×m矩阵,

ea54cc89e39640be4ccd5f1fd9ede8ee.png表示k×k单位矩阵,那么我们可以定义克罗内克和

9195e275586ee3459bdc6b297159d9bd.png为:

b5bd441cb4c7155ef3fa352ebab5f6c3.png

[编辑]

假设A和B分别是大小为n和q的方块矩阵。设λ1,……,λn为A的特征值,μ1,……,μq为B的特征值。那么A

b04c82bba3b59803e1690d0d919ece92.pngB的特征值为:

λiμj,i=1,……,n;j=1,……,q。

于是可以推出,两个矩阵的克罗内克积的迹和行列式为:

bef9180b4f6c336f040716ce15dc310c.png

[编辑]

奇异值

如果A和B是长方矩阵,那么我们可以考虑它们的奇异值分解|奇异值。假设A有rA个非零的奇异值,它们是:

σA,i,i=1,……,rA

类似地,设B的非零奇异值为:

σB,i,i=1,……,rB

那么克罗内克积A

b04c82bba3b59803e1690d0d919ece92.pngB有rArB个非零奇异值,它们是:

σA,iσB,j, i=1,……,rA, j=1,……,rB

由于一个矩阵的秩等于非零奇异值的数目,因此我们有:

f6071c8f5132b78b5217ef4cfebc00b8.png

[编辑]

与抽象张量积的关系

矩阵的克罗内克积对应于线性映射的抽象张量积。特别地,如果向量空间V、W、X和Y分别具有基{v1,...,vm}、{w1,...,wn}、{x1,...,xd}和{y1,...,ye},且矩阵A和B分别在恰当的基中表示线性变换S:V→X和T:W→Y,那么矩阵A⊗B表示两个映射的张量积S⊗T:V⊗W→X⊗Y,关于V⊗W的基{v1⊗w1,v1⊗w2,...,v2⊗w1,...,vm⊗wn}和X⊗Y的类似基。

[编辑]

转置

克罗内克积转置运算符合分配律:

56f1110af2160373b5528690f5ead1c9.png

[编辑]

克罗内克积的矩阵方程

克罗内克积可以用来为一些矩阵方程得出方便的表示法。例如,考虑方程AXB=C,其中A、B和C是给定的矩阵,X是未知的矩阵。我们可以把这个方程重写为

53a6358bee568d9cc4014d7d2d004b67.png

这样,从克罗内克积的性质可以推出,方程AXB=C具有唯一的解,当且仅当A和B是非奇异矩阵。

在这里,vec(X)表示矩阵X的向量化,它是把X的所有列堆起来所形成的列向量。

如果把X的行堆起来,形成列向量x,则AXB也可以写为

ef12f035893146e29a5188edc37fea50.png

[编辑]

克罗内克积的例子

70a2a782af53ab5bc85ca4a2a173ebd9.png.6f973ddcf5493d254dad5fe4ab2d4907.png.

本条目对我有帮助14

MBA智库APP

扫一扫,下载MBA智库APP

分享到:

  • 1
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值